

ΕN

DECLARATION OF PERFORMANCE

DoP 0308

for fischer injection system FIS EM Plus (Mortar for post-installed rebar connections)

1.	Unique identification code of the product-type:	DoP 0308
2.	Intended use/es:	System for post-installed reinforcing bar (rebar) connections with improved bond- splitting behaviour see appendix, especially annexes B1-B9.
3.	Manufacturer:	fischerwerke GmbH & Co. KG, Otto-Hahn-Straße 15, 79211 Denzlingen, Germany
4.	Authorised representative:	-
5.	System/s of AVCP:	1
6.	European Assessment Document: European Technical Assessment: Technical Assessment Body: Notified body/ies:	EAD 332402-00-0601-v01, Edition 10/2020 ETA-22/0001; 2022-06-08 DIBt- Deutsches Institut für Bautechnik 2873 TU Darmstadt
7.	Declared performance/s: Mechanical resistance and stability (BWR 1) Characteristic resistance to tension load (static and Resistance to combined pull- out and concrete failure Resistance to concrete cone failure: Annex C1 Robustness: Annexes C1-C3 Resistance to bond-splitting failure: Annex C1 Influence of cracked concrete on resistance to combi	in uncracked concrete: Annexes C2, C3

8. <u>Appropriate Technical Documentation and/or</u> <u>Specific Technical Documentation:</u>

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

(Lift'

Dr.-Ing. Oliver Geibig, Managing Director Business Units & Engineering Turnlingen, 2022-06-22 Jürgen Grün, Managing Director Chemistry & Quality

This DoP has been prepared in different languages. In case there is a dispute on the interpretation the English version shall always prevail.

_

The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Specific Part

1 Technical description of the product

The subject of this European technical assessment is the post-installed connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the fischer injection system FIS EM Plus in accordance with the regulations for reinforced concrete construction.

Reinforcing bars with a diameter ϕ from 8 to 40 mm according to Annex A and the injection mortar FIS EM Plus are used for the post-installed rebar connection. The rebar is placed into a drilled hole filled with injection mortar and is anchored via the bond between embedded reinforcing bar, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the rebar connection is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the rebar connections of at least 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

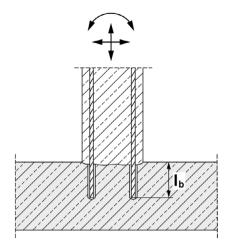
3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1 to C 3

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1


4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 332402-00-0601, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1


Installation conditions and application examples reinforcing bars Figure A1.1:

Column / wall to foundation / slab

Figure A1.2:

Slab / beam to wall or beam to column

fischer injection system FIS EM Plus

Product description

Installation conditions and application examples reinforcing bars

Figures not to scale

Annex A 1

Appendix 2 / 16

Overview system components	
Injection cartridge (shuttle cartridge) FIS EM Plus with sealing cap; Sizes: 390 ml, 585	ml, 1100 ml, 1500 ml
Imprint: fischer FIS EM Plus, processing notes, shelf-life, piston trav scale (optional), curing times and processing times (depending on temperature), hazard code, size, volume	
Static mixer FIS MR Plus for injection cartridges 390 ml	
Static mixer FIS UMR for injection cartridges ≥ 585 ml	
Injection adapter and extension tube Ø 9 for static mixer FIS MR Plus; Injection adapter and extension tube Ø 9 or Ø 15 for static mixer FIS UMR	
Reinforcing bar (rebar) Sizes: \$\$, \$10, \$12, \$14, \$16, \$20, \$22, \$24, \$25, \$26, \$28, \$30, \$ marking s 1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	32,
fischer cleaning brush	
Compressed-air cleaning tool with fischer compressed-air nozzle	
	Figures not to scale
fischer injection system FIS EM Plus	
Product description Overview system components: injection mortar, static mixer, injection adapter, reinforcing bar, cleaning tools	Annex A 2 Appendix 3 / 16

Properties of reinforcing bars (rebar)

Figure A3.1:

- The minimum value of related rib area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- The maximum outer rebar diameter over the ribs shall be:
 - The nominal diameter of the bar with rib ϕ + 2 · h (h ≤ 0,07 · ϕ)
 - (ϕ : Nominal diameter of the bar; h_{rib} = rib height of the bar)

Table A3.1: Installation conditions for rebars

	ф	8	1)	10 ¹⁾	12	2 ¹⁾	14	16	20	22	24
d_0		10	12	12 14	14	16	18	20	25	30	30
h₀							h ₀	≥ I _b			
$I_{\rm b} = I_{\rm v}$	[mm]						tion				
h _{min}			-					lb	+ 2d ₀		
		25	=1)	26	2	0	20	22	24	26	40
d	φ			-	_	•		-	•••		40 55
		30	30	35	3	5		-	40	45	55
	[mm]					200			tion		
h _{min}	[]					acc					
				•							
nex C	Ba f _{yk}	rs ar and	nd de k ac	e-coiled i cording t	rods	clas	_		2-1-1/NA		
	h_{0} $I_{b} = I_{v}$ h_{min} d_{0} h_{0} $I_{b} = I_{v}$ h_{min} $I_{b} = used$	$\frac{h_0}{ l_b = _v} \text{ [mm]}$ $\frac{h_{min}}{h_{min}}$ $\frac{\Phi}{h_0} \text{ [mm]}$ $\frac{h_0}{ l_b = _v} \text{ [mm]}$ $h_{min} \text{ [mm]}$ $h_{min} \text{ Prevent } \text{ Re}$ $\frac{Re}{frebars}$	$ \begin{array}{c c} h_0 \\ \hline h_b = I_V \\ \hline h_{min} \end{array} \begin{bmatrix} mm \end{bmatrix} \\ \hline \\$	$\begin{array}{c c} h_{0} \\ \hline h_{b} = I_{v} \\ \hline h_{min} \\ \hline \end{array} \\ \hline \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	h₀ [mm] $l_b = l_v$ [mm] h_{min} $l_b + 30$ ϕ 25^{1}) 26 d₀ 30 35 35 h₀ $l_b = l_v$ [mm] a_b hmin a_b a_b a_b hmin a_b a_b a_b hmin a_b a_b a_b he used a_b a_b a_b f rebars Reinforcing bar (regressing to the second to the sec	h₀ [mm] $l_b = l_v$ [mm] h_{min} $l_b + 30$ h_{min} $l_b + 30$ ϕ 25 ¹) 26 2 d_0 30 35 35 3 h_0 $l_b = l_v$ [mm] u_b u_b u_b h_{min} u_b u_b u_b u_b u_b h_{min} u_b	h₀ [mm] acc $l_b = l_v$ [mm] acc h_{min} $l_b + 30$ (≥ 100) ϕ 25 ¹) 26 28 d_0 30 35 35 h_0 acc $l_b = l_v$ [mm] acc h_{min} acc h_{min} acc h_{min} acc h_{min} acc h_{min} Bars and de-coiled rods clas f rebars Bars and de-coiled rods clas f_{yk} and k according to NDP o NDP o	ho ho ho lb = lv [mm] acc. to static hmin lb + 30 (≥ 100) (≥ 100) 26 28 30 do 30 35 35 40 ho acc. to static ho ho ho do 30 35 35 40 ho acc. to static ho ho ho ho acc. to static ho ho ho ho ho Bars and de-coiled rods class B or C fyk and k according to NDP or NCI of ho ho	ho ho ≥ lb lb = lv [mm] acc. to static calcula hmin lb + 30 lb hmin (≥ 100) lb ϕ 25 ¹) 26 28 30 32 d_0 30 35 35 40 40 ho $h_0 \ge l_b$ acc. to static calcula h_0 $h_0 \ge l_b$ acc. to static calcula h_{min} $h_0 \ge l_b$ $h_0 \ge l_b$ h_{min} $l_b + 2d_0$ $l_b + 2d_0$ h be used f rebars Reinforcing bar (rebar) Bars and de-coiled rods class B or C with f_{yk} and k according to NDP or NCI of EN 1992	h₀ h₀ ≥ l₀ l₀ = l₀ acc. to static calculation hmin l₀ + 30 l₀ + 2d₀ h₀ l₀ + 30 l₀ + 2d₀ h₀ l₀ + 2d₀ h₀<	h_0 Imm h_0 \ge I_b Ib = Iv [mm] acc. to static calculation h_min Ib + 30 Ib + 2do ϕ 25 ¹) 26 28 30 32 34 36 do 30 35 35 40 40 40 45 h_0 Ib = Iv [mm] acc. to static calculation acc. to static calculation h_min Ib = Iv [mm] acc. to static calculation Ib + 2do h_0 > Ib Ib = Iv [mm] acc. to static calculation Ib + 2do h_0 > Ib Ib = Iv [mm] Bars and de-coiled rods class B or C with Ib + 2do h_0 > Ib Bars and de-coiled rods class B or C with Ib + 2do Ib + 2do Ib + 2do

Table B1.1:	Overview use an	d performance catego	ories					
Fastenings subject	t to	FIS EM Plus with …						
			Reinford	ing bar				
		<u>z</u>						
Hammer drilling with standard drill bit	######################################		all si	zes				
Hammer drilling with hollow drill bit (fischer "FHD", Heller "Duster Expert"; Bosch "Speed Clean"; Hilt "TE-CD, TE-YD", DreBo "D-Plus", DreBo "D-Max")		Nom	inal drill bit c 12 mm to 3	liameter (d₀) 35 mm				
	I1 dry or wet concrete	all sizes						
Use category I2 water filled hole		all sizes (not permitted in combination with working life 100 years						
Characteristic resistance under	in uncracked concrete	all sizes		Tables: C1.1 C1.2				
static and quasi static loading,	in cracked concrete	all sizes	all sizes					
Seismic performar category	ICEC1C2		_1)				
Installation direction	'n	D3 (downward and	I horizontal a	and upwards (e.g. overhead))			
Installation temper	ature	T _{i,mi}	_n = -5 °C to	T _{i,max} = +40 °C				
Service	Temperature range I	-40°C to +60°C	•	hort term temperature +60 ° ong term temperature +35 °C				
temperature	Temperature range II	-40 °C to +72 °C	(max. s	hort term temperature +72 °	C;			
¹⁾ No performance fischer injection		Plus		Anne	- 			

Specifications of intended use part 2

Anchorages subject to:

Static and quasi-static loading: reinforcing bar (rebar) size 8 mm to 40 mm

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013+A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016
- Maximum chloride content of 0,40 % (CL 0.40) related to the cement content according to EN 206:2013+A1:2016
- Non-carbonated concrete
 Note: In case of a carbonated surface of the existing concrete structure, the carbonated layer shall be removed in the area
 of the post-installed rebar connection with a diameter of φ + 60 mm prior to the installation of the new rebar. The depth of
 concrete to be removed shall correspond to at least the minimum concrete cover in accordance with
 EN 1992-1-1 :2004+AC:2010. The foregoing may be neglected if building components are new and not carbonated and if
 building components are in dry conditions.

Design:

- Fastenings are designed under the responsibility of an engineer experienced in fastenings and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted.
- Design under static and quasi static loading in accordance with EOTA Technical Report TR 069 October 2019.
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.
- The shear force must be transferred via the rough joint; the subsequent reinforcement must not be applied for shear force transfer.

Installation:

- Rebar installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be determined using a rebar detector suitable for this purpose as well as on the basis of the construction documentation and then marked on the building component for the overlap joint).
- Rebars in overhead installation have to be fixed in their position until the injection mortar is cured.

fischer injection system FIS EM Plus

Intended Use Specifications part 2 Annex B 2

Table B3.1:Minimum concrete cover c_{min} ¹⁾ depending on the drilling method and the
drilling tolerance ²⁾

	•			
	nominal		Minimum concrete cove	er C _{min}
Drilling method	diameter of reinforcing bar	Without drilling aid [mm]		drilling aid [mm]
Hammer drilling with	< 25	30 mm + 0,06 l _b ≥ 2 φ	30 mm + 0,02 l _b ≥ 2 φ	
standard drill bit	≥ 25	40 mm + 0,06 l _b ≥ 2 φ	40 mm + 0,02 l _b ≥ 2 φ	
Hammer drilling with hollow drill bit (fischer "FHD", Heller "Duster Expert"; Bosch	< 25	30 mm + 0,06 l _b ≥ 2 ¢	30 mm + 0,02 l _b ≥ 2 φ	Drilling aid
"Speed Clean"; Hilti "TE-CD, TE-YD")	≥ 25	40 mm + 0,06 l _b ≥ 2 ¢	40 mm + 0,02 l _b ≥ 2 φ	

¹⁾Note: The minimum concrete cover as specified in EN 1992-1-1:2004+AC:2010 must be observed. ²⁾Minimum clear spacing is a = max (40 mm; $4 \cdot \phi$)

Table B3.2:Dispensers and cartridge sizes corresponding to
maximum embedment depth lb,max

reinforcing bars (rebar)	Manual dispenser	Pneumatic or cordless dispenser (small)	Pneumatic or cordless dispenser (large)		
	Cartridge size	Cartridge size	Cartridge size		
	390 ml, 585 ml	390 ml, 585 ml	1500 ml		
φ [mm]	l _{b,max} [mm]	l _{b,max} [mm]	l _{b,max} [mm]		
8		1000			
10		1000	1800		
12	1000	1200			
14		1200			
16		1500			
20	700	1300			
22 / 24 / 25	700	1000			
26 / 28	500	700			
30 / 32 / 34			2000		
36 / 40	no performance assessed	500			

fischer injection system FIS EM Plus

Figures not to scale

Annex B 3

Appendix 7 / 16

Table B4.1: Conditions for use static mixer without an extension tube

				_			_							
Nominal drill hole diameter	do		10	12	14	16	18	20	24	25	28	30	35	40
Drill hole depth h ₀ by	FIS MR Plus	[mm]	≤g	0	≤120	≤140	≤150	≤160	≤190			≤210		
using	FIS UMR		-	-	≤90	≤160	≤180	≤190	≤2	20		≤2	50	

Table B4.2: Working times twork and curing times tcure

Temperature at anchoring base [°C]	Maximum processing time ¹⁾ t _{work}	Minimum curing time ²⁾ t _{cure}			
-5 to 0	240 min ³⁾	200 h			
>0 to 5	150 min ³⁾	90 h			
>5 to 10	120 min ³⁾	40 h			
>10 to 20	30 min	18 h			
>20 to 30	14 min	10 h			
>30 to 40	7 min ⁴⁾	5 h			

¹⁾ Maximum time from the beginning of the injection to rebar / fischer rebar anchor setting and positioning

²⁾ For wet concrete the curing time must be doubled

³⁾ If the temperature in the concrete falls below 10°C the cartridge has to be warmed up to +15°C.

⁴⁾ If the temperature in the concrete exceeds 30 °C the cartridge has to be cooled down to +15°C up to 20°C

Table B4.3: Installation tools for drilling and cleaning the bore hole and injection of the mortar

reinforcing bars (rebar)		Drilling and	cleaning		Inje	ction
	Nominal drill bit diameter	Diameter of cutting edge	Steel brush diameter	Diameter of cleaning nozzle ³⁾	Diameter of extension tube	Injection adapter
φ [mm]	d₀ [mm]	d _{cut} [mm]	d₀ [mm]	[mm]	[mm]	[colour]
8 ¹⁾	10 ²⁾	≤ 10,50	11			
0.,	12	≤ 12,50	14			nature
10 ¹⁾	12	≤ 12,50	14	11	9	nature
10 /	14	≤ 14,50	16		9	blue
12 ¹⁾	14	≤ 14,50	16			blue
12 /	16	≤ 16,50	20	15		red
14	18	≤ 18,50	20			yellow
16	20	≤ 20,55	25	19		green
20	25	≤ 25,55	27	19		black
22 / 24	30	≤ 30,55	32			grey
25 ¹⁾	30	≤ 30,55	32	28	9 or 15	grey
23 /	35	≤ 35,70	37	20	90115	brown
26 / 28	35	≤ 35,70	37			brown
30 / 32 / 34	40 ²⁾	≤ 40,70	42			red
36	45 ²⁾	≤ 45,70	47	38		yellow
40	55 ²⁾	≤ 55,70	58			nature

¹⁾ Both drill bit diameters can be used

²⁾ Only hammer drilling with standard drill bit

³⁾ Cleaning nozzle and extension is only necessary if bore hole depth is greater than the length of compressedair cleaning tool

fischer injection system FIS EM Plus

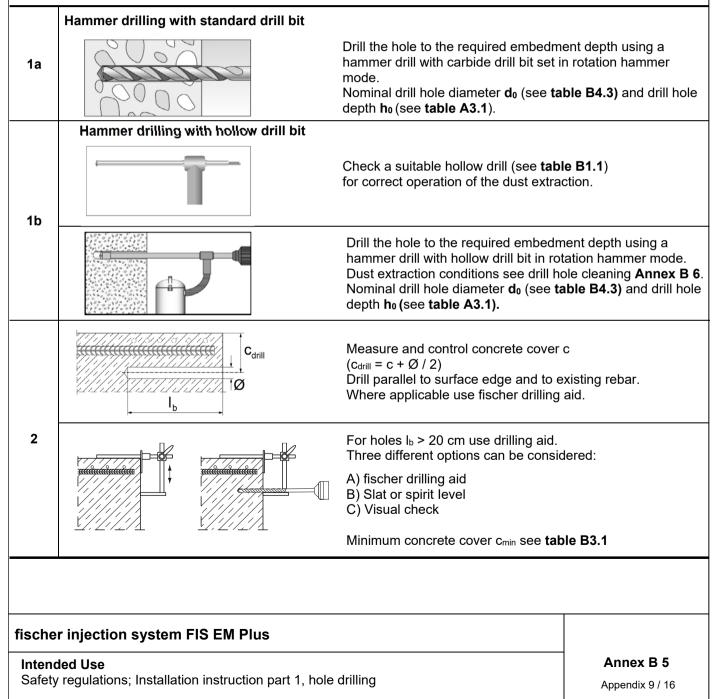
Intended Use

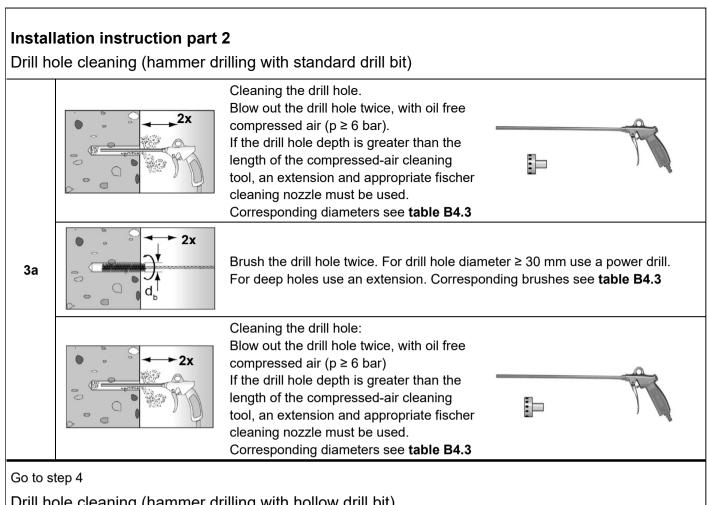
Working times and curing times; Installation tools for drilling and cleaning the bore hole and injection of the mortar Annex B 4

Appendix 8 / 16

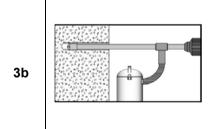
Safety regulations

Review the Safety Data Sheet (SDS) before use for proper and safe handling!


Wear well-fitting protective goggles and protective gloves when working with mortar FIS EM Plus.


Important: Observe the instructions for use provided with each cartridge.

Installation instruction part 1


Hole drilling

Note: Before drilling, remove carbonated concrete; clean contact areas (see Annex B 2) In case of aborted drill holes the drill hole shall be filled with mortar.

Drill hole cleaning (hammer drilling with hollow drill bit)

Use a suitable dust extraction system, e.g. fischer FVC 35 M or a comparable dust extraction system with equivalent performance data.

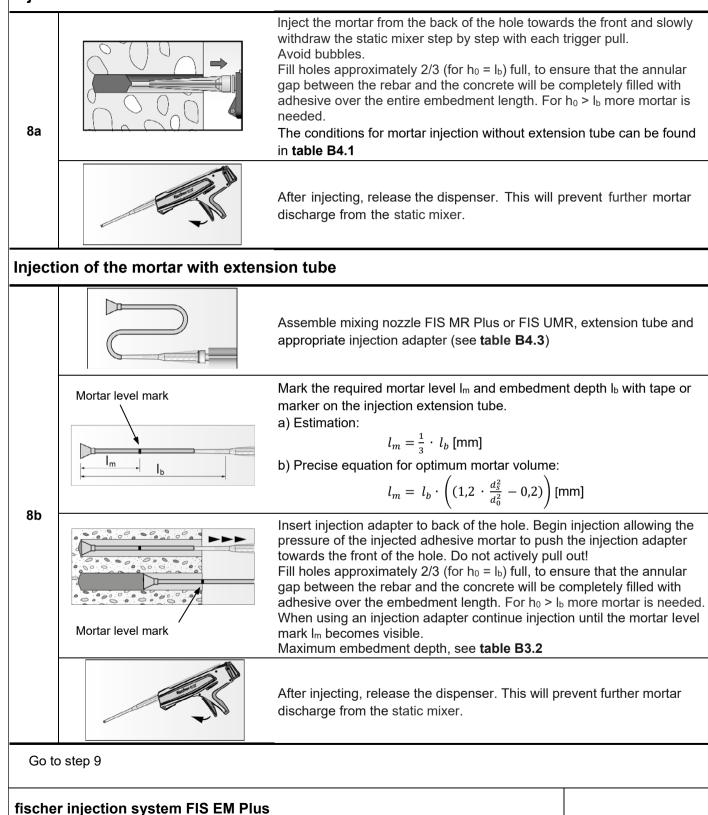
Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process and must be adjusted to maximum power. Check the hollow drill for correct operation of the dust extraction. No further cleaning steps necessary.

Go to step 4

fischer injection system FIS EM Plus

Intended Use Installation instruction part 2, drill hole cleaning Annex B 6

Appendix 10 / 16


Installation instruction part 3 Reinforcing bars (rebar) and cartridge preparation

4		Before use, make asure that the rebar is other residue. Mark the embedment depth I_b (e.g. with Insert rebar in borehole, to verify drill hold depth I_b	tape)
5		Twist off the sealing cap Twist on the static mixer (the spiral in the clearly visible).	e static mixer must b
6	Tischer est	Place the cartridge into a suitable disper	nser.
7	X	Press out approximately 10 cm of morta permanently grey in colour. Mortar whicl will not cure and must be disposed.	
Go to	o step 8		
schei	r injection system FIS EM Plus		
ntend	led Use		Annex B 7

Intended Use Installation instruction part 3, reinforcing bars (rebar) and cartridge preparation

Appendix 11 / 16

Installation instruction part 4; Installation with FIS EM Plus Injection of the mortar without extension tube

Intended Use Installation instruction part 4, mortar injection Annex B 8

Installation instruction part 5; Installation with FIS EM Plus

Insert rebar

9		Insert the rebar slowly twisted into the borehole until the embedmereached. Recommendation: Rotation back and forth of the reinforcement bar makes pushing eached							
10		 After installing the rebar the annular gap must be completed. Proper installation Desired embedment depth is reached lb: embedment mark at concrete surface Excess mortar flows out of the borehole after the resinserted up to the embedment mark. 							
11		from falling till mortar							
12		varies according to ebar position may be nas elapsed							
	er injection system FIS E	EM Plus							
Inten	Annex B 9								

Installation instruction part 5, insert rebar

Appendix 13 / 16

Size	All sizes																			
Characteristic resistance unde	r tension	loadir	g																	
Installation factor] See annex C 2 to C 3																			
Factors for the compressive st	rength of	concr	ete > C	20/2	5															
	C25/30	C							1,0)2										
Increasing factor ψ_c for	C30/37	7							1,0)4										
cracked or uncracked	C35/45	5 ,							1,0)6										
concrete	C40/50	[-]							1,0)7										
$\tau_{Rk,C(X/Y)} = \psi_{c} \cdot \tau_{Rk(C20/25)}$	C45/5	5							1,0	8										
	C50/60	C							1,0	9										
Concrete cone failure																				
Uncracked concrete	k ucr,N								11	,0										
Cracked concrete	k cr,N	[-]	7,7																	
Edge distance	Ccr,N								1,5	· I _b										
Spacing	Scr,N	[mm	1] <u>3 · Ib</u>																	
Factors for sustained tension I	oading	•	•																	
Factor	$\Psi^{0}_{ ext{sus}}$	[-]							_1)										
working life	50 and	тоо у Ф	ears 8 10) 12	14	16	18 2	0 2	2 24	25	26	28	30	32	34	36	40			
Bond-splitting failure for worki	ng life of	<u> </u>		_				•	- 1		1-•	1	1				1			
Calculation diameter	d	[mm]	<u>т г – – – – – – – – – – – – – – – – – – </u>	1	14	16	18 2	0 2	2 24	25	26	28	30	32	34	36	40			
Hammer-drilling with standard dri	ll bit or ho	llow dr	ill bit fo	r 50 a	and 1	00	years	I							I					
Product basic factor	Ak		4,4																	
Exponent for influence of concret compressive strength	e sp1		0,33																	
Exponent for influence of rebar diameter φ	sp2		0,34																	
Exponent for influence of concret cover c_d	e sp3	[-]	0,62																	
Exponent for influence of side concrete cover (c _{max} / c _d)	sp4		0,33																	
Exponent for influence of	onent for influence of lb1 horage length l₀						0,68													
												_								

Table C2.1Characteristic resistance under tension loading for reinforcing bars in hammer drilled holes; uncracked or cracked concrete; working life 50 years																						
Nominal diameter of the bar	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40					
Combined pullout and concre						1	1			1			1	<u> </u>								
Calculation diameter	d	[mm]	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40			
Uncracked concrete																						
Characteristic bond resistance	e in unc	cracked c	onc	rete	C20)/25																
Hammer-drilling with standard of	rill bit or	hollow dr	ill bit	t (dry	/ or	wet	con	cret	e <u>)</u>					1	I							
Tem- I: 35 °C / 60 °C			16	15	15	14	14	13	13	13	12	12	12	12	12	12	11	11	11			
perature range II: 50 °C / 72 °C	$ au_{Rk,ucr}$	[N/mm ²]	15	14	14		13		12	12	12	11	11	11	11	11	11	10	10			
Hammer-drilling with standard of	drill bit or	hollow dr	ill bit	t (wa	ater	fillec	l ho	le <u>)</u>	1			1	r	1	1							
Tem- I: 35 °C / 60 °C	_	5 .17 27	16	16	14	13	12	12	11	11	10	10	10	10	9	9	9	8	8			
perature range II: 50 °C / 72 °C	$ au_{Rk,ucr}$	[N/mm ²]	15	14	13	12	12	11	11	10	10	9	9	9	9	8	8	8	8			
Installation factors		1	1																			
Dry or wet concrete	γinst	[-]	1,0																			
Water filled hole	•		1,4																			
Influence of cracked concrete	e on con	nbined pu	llou	t an	d co	onci	rete	cor	ne fa	ilur	e fo	r wo	orkir	ng life of 50 years								
Factor for influence of cracked concrete ✓	Ω_{cr}	[-]	0,91	0,91	0,91	0,91	0,91	0,91	0,92	0,92	0,92	0,92	0,92	0,92	0,92	0,93	0,93	0,93	0,93			
fischer injection system F	IS EM P	lus													Δ	nne	хC	2				

Characteristic resistance under tension loading for reinforcing bars in hammer drilled holes; uncracked or cracked concrete; working life 50 years

Appendix 15 / 16

Table C3.1: Characteristic resistance under tension loading for reinforcing bars in hammer drilled holes; uncracked or cracked concrete; working life 100 years																					
Nominal of	diam	eter of the bar		φ	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Combined pullout and concrete cone failure																					
Calculation	n dia	ameter	d	[mm]	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Uncracked concrete																					
Character	ristic	bond resistan	ce in unc	cracked c	onc	rete	C20)/25													
Hammer-c	drillin	g with standard	drill bit or	hollow dri	ll bi	t (dr	y or	wet	con	crete	e <u>)</u>										
Tem-	I:	35 °C / 60 °C	$ au_{Rk,ucr}$	[N/mm ²]	16	15	15	14	14	13	13	13	12	12	12	12	12	12	11	11	11
perature range	II:	50 °C / 72 °C			15	14	14	13	13	12	12	12	12	11	11	11	11	11	11	10	10
Installatio	on fa	ctors																			
Dry or wet	con	crete	γinst	[-]	1,0																
Tem-	I:	35 °C / 60 °C	~	r 1	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75
perature range	II:	50 °C / 72 °C	⁻ α100 years	[-]	0,55	0,60	0,60	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65
Influence	of c	racked concret	e on con	nbined pu	llou	it an	nd co	onci	rete	con	ie fa	ilur	e fo	r wo	rkir	ng li	fe o	f 100) ye	ars	
Factor for concrete	influ	ence of cracked	Ω_{cr}	[-]	0,91	0,91	0,91	0,91	0,91	0,91	0,92	0,92	0,92	0,92	0,92	0,92	0,92	0,93	0,93	0,93	0,93

¹⁾ Calculation of characteristic bond resistance in uncracked concrete $T_{Rk,100, ucr}$:

 $\tau_{\text{Rk,100, ucr}} = \alpha_{100 \text{ years}} \cdot \tau_{\text{Rk,ucr}}$

fischer injection system FIS EM Plus

Performances

Characteristic resistance under tension loading for reinforcing bars in hammer drilled holes; uncracked or cracked concrete; working life 100 years

Annex C 3

Appendix 16 / 16