

DECLARATION OF PERFORMANCE

DoP 0283

for fischer injection system FIS EB (Bonded fastener for use in concrete)

ΕN

1. Unique identification code of the product-type: DoP 0283

2. Intended use/es: Post-installed fastening for use in cracked or uncracked concrete see appendix, especially annexes

B1 - B9.

3. Manufacturer: fischerwerke GmbH & Co. KG, Otto-Hahn-Straße 15, 79211 Denzlingen, Germany

Authorised representative:

5. System/s of AVCP: 1

6. European Assessment Document: ETAG 001, Part 5, April 2013, used as EAD

European Technical Assessment: ETA-15/0440; 2017-12-13

Technical Assessment Body: DIBt- Deutsches Institut für Bautechnik

Notified body/ies: 2873 TU Darmstadt

7. Declared performance/s:

Mechanical resistance and stability (BWR 1)

Characteristic resistance to tension load (static and quasi-static loading):

Resistance to steel failure: Annexes C1, C2

Resistance to combined pull- out and concrete cone failure: Annexes C4, C5

Resistance to concrete cone failure: Annex C3

Edge distance to prevent splitting under load: Annex C3

Robustness: Annexes C3-C5, C9, C10 Maximum installation torque: Annex B3

Minimum edge distance and spacing: Annexes B3, B4

Characteristic resistance to shear load (static and quasi-static loading):

Resistance to steel failure: Annexes C1, C2 $(k_7=k_2)$ Resistance to pry-out failure: Annex C3 $(k_8=k_3)$

Resistance to concrete edge failure: Annex C3

Displacements under short-term and long-term loading:

Displacements under short-term and long-term loading: Annexes C6

Characteristic resistance and displacements for seismic performance categories C1 and C2:

Resistance to tension load, displacements, category C1: Annexes C7-C9
Resistance to tension load, displacements, category C2: Annexes C7, C10

Resistance to shear load, displacements, category C1: Annexes C7, C8

Resistance to shear load, displacements, category C2: Annex C7 $\,$

Factor for annular gap: NPD

Hygiene, health and the environment (BWR 3)

Content, emission and/or release of dangerous substances: NPD

8. <u>Appropriate Technical Documentation and/or Specific Technical Documentation:</u>

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Dr.-Ing. Oliver Geibig, Managing Director Business Units & Engineering

Tumlingen, 2021-01-19

Jürgen Grün, Managing Director Chemistry & Quality

This DoP has been prepared in different languages. In case there is a dispute on the interpretation the English version shall always prevail.

The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Fischer DATA DOP_ECs_V39.xlsm 1/1

Specific Part

1 Technical description of the product

The fischer injection system FIS EB is a bonded anchor consisting of a cartridge with injection mortar fischer FIS EB and a steel element.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic values under static and quasi-static action, Displacements	See Annex C 1 to C 6
Characteristic values for seismic performance categories C1 and C2 5, Displacements	See Annex C 7 to C 10

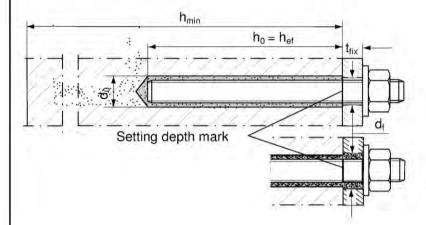
3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

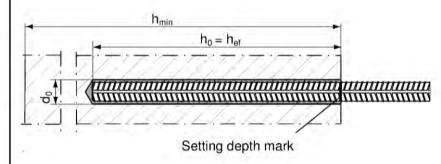

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Installation conditions

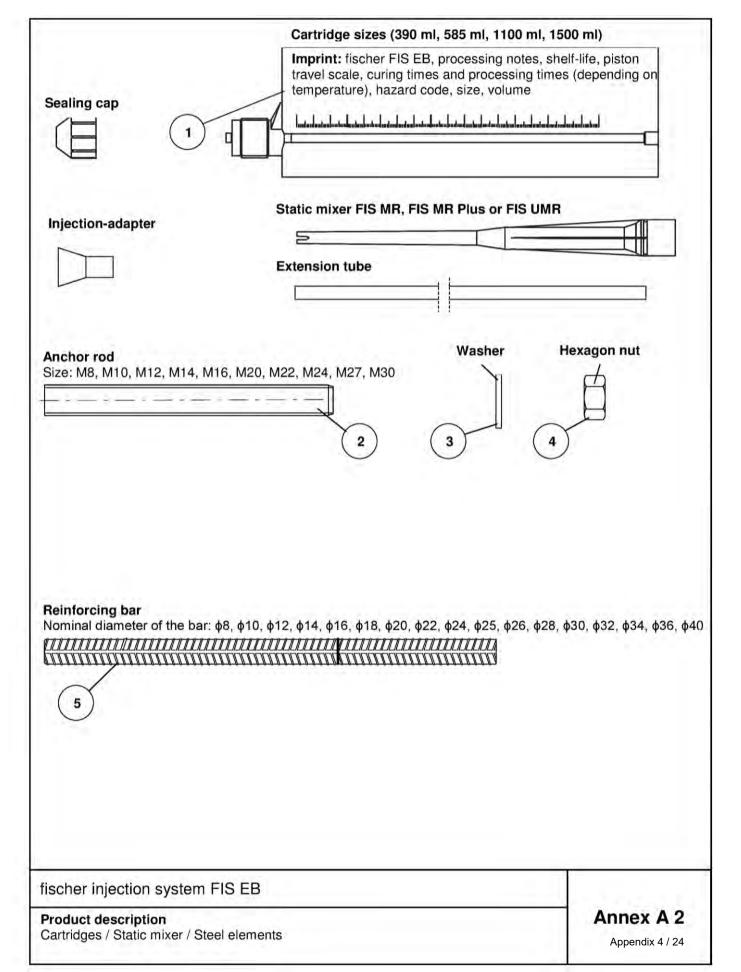


Anchor rod

Pre-positioned anchor

Anchor rod

Push through anchor (annular gap filled with mortar)



Reinforcing bar

fischer injection system FIS EB

Product description Installation conditions Annex A 1

Appendix 3 / 24

Part	Designation	Mat	Material										
1	Mortar cartridge	Mortar, ha	rdener, filler										
	Steel grade	Steel, zinc plated	Stainless steel A4										
2	Anchor rod		Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462 EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 12 \%$ fracture elongation eations without requirements for seismic										
3	Washer ISO 7089:2000	zinc plated ≥ 5 µm, EN ISO 4042:1999 A2K or hot-dip galvanized ≥ 40 µm EN ISO 10684:2004	e category C2 1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014										
4	Hexagon nut	Property class 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5 μm, ISO 4042:1999 A2K or hot-dip galvanized ≥ 40 μm EN ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439 1.4362 EN 10088-1:2014										
7	Reinforcing bar EN 1992-1-1:2004 ar AC:2010, Annex C	Bars and de-coiled rods, class B or C with fully and k according to NDP or NCL of EN $f_{uk} = f_{tk} = k \cdot f_{vk}$											

fischer injection	system	FIS EB
-------------------	--------	--------

Specifications of intended use (part 1)

Table B1: Overview use and performance categories

Anchorages subje	ect to	FIS EB with									
		Anch	or rod	Reinfor	Reinforcing bar						
Hammer drilling with standard drill bit	G-6444444444		all sizes								
Hammer drilling with hollow drill bit (Heller "Duster Expert" or Hilti "TE-CD, TE-YD")	Ī	No	minal drill bit diamete	er (d₀) 12 mm to 35 ı	mm						
Diamond drilling	-		all s	izes							
Static and quasi	uncracked concrete	all sizes	Tables:	all sizes	Tables:						
static load, in	cracked concrete	all sizes	C1, C3, C4, C6	dii 31263	C2, C3, C5, C7						
Seismic performance category (only	C1	M10 to M30	Tables: C8, C10, C11	φ10 to φ32	Tables: C9, C10, C12						
hammer drilling with Standard / hollow drill bits)	C2	M12, M16, M20, M24	Tables: C8, C10, C13								
Use category -	dry or wet concrete	all SIZES									
Ose category	flooded hole		all s	izes							
Installation temperature			+5 °C to	+40 °C							
In-service temperature		-40 °C to +72 °C	(max. long term temporary term temporary)								

fischer injection system FIS EB	
Intended use Specifications (part 1)]

Specifications of intended use (part 2)

Base materials:

 Reinforced or unreinforced normal weight concrete Strength classes C20/25 to C50/60 according to EN 206-1:2000

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Anchorages have to be designed by a responsible engineer with experience in anchorages and concrete work
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored.
 The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages under static or quasi-static actions are designed in accordance with EOTA Technical Report TR 029 "Design of bonded anchors" Edition September 2010 or CEN/TS 1992-4:2009
- · Anchorages under seismic actions (cracked concrete) have to be designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure
 - Fastenings in stand-off installation or with a grout layer under seismic action are not allowed

Installation:

- Anchor installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- In case of aborted hole: The hole shall be filled with mortar
- Anchorage depth should be marked and adhered to on installation
- Overhead installation is allowed.

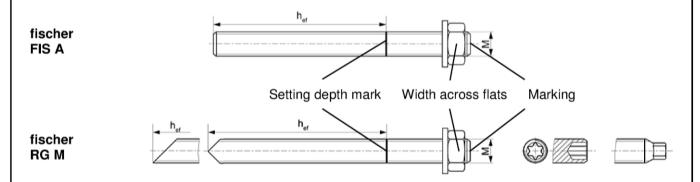

fisc	her	injed	ction	system	F	IS	EB
------	-----	-------	-------	--------	---	----	----

Table B2: Installation parameters for anchor rods

Size				М8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Width across flats		SW		13	17	19	22	24	30	32	36	41	46
Nominal drill bit diameter		d_0		12	14	14	16	18	24	25	28	30	35
Drill hole depth		h_0						h ₀ =	h _{ef}				
Effective		$h_{\text{ef},\text{min}}$		60	60	70	75	80	90	93	96	108	120
anchorage depth		$h_{\text{ef},\text{max}}$		160	200	240	280	320	400	440	480	540	600
Minimum spacing and minimum edge distance		S _{min} = C _{min}	[mm]	40	45	55	60	65	85	95	105	120	140
Diameter of	pre- positioned anchorage	d _f		9	12	14	16	18	22	24	26	30	33
clearance hole in the fixture ¹⁾	push through anchorage	d _f		14	16	16	18	20	26	28	30	33	40
Minimum thickness of concrete member		h _{min}			h _{ef} + 30 (≥ 100)		h _{ef} + 2d ₀						
Maximum installation torque		$T_{inst,max}$	[Nm]	10	20	40	50	60	120	135	150	200	300

¹⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1

Anchor rod:

Marking (on random place) fischer anchor rod FIS A or RG M:

Property class 8.8: •

Stainless steel A4, property class 50: ••

Or colour coding according to DIN 976-1

Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:

- Materials, dimensions and mechanical properties according Annex A 3, Table A1
- Inspection certificate 3.1 according to EN 10204:2004, the documents have to be stored
- · Setting depth is marked

fischer injection	system	FIS	EB
-------------------	--------	-----	----

Intended use

Installation parameters anchor rods

Annex B 3

Appendix 8 / 24

Table B3: Installation para	ameters	s for re	einfo	orci	ing l	bar	ſS							
Nominal diameter of the bar		ф	8 ¹	I)	10	1)	12	2 ¹⁾	14	16	18	20	22	24
Nominal drill bit diameter	d ₀		10	12	12	14	14	16	18	20	25	25	30	30
Drill hole depth	h_0			$h_0 = h_{ef}$										
Effective	h _{ef,min}		60	0	60)	7	0	75	80	85	90	94	98
anchorage depth	h _{ef,max}	[mm]	16	0	200		24	40	280	320	360	400	440	480
Minimum spacing and minimum edge distance	S _{min} = C _{min}		40	45	5	5	55	60	65	75	85	95	105	
Minimum thickness of concrete member	h _{min}		ef + 30 ≥ 100				h _{ef} + 2d ₀							
Nominal diameter of the bar		ф	25	5	26	3	2	8	30	32	34	36	40	
Nominal drill bit diameter	d ₀		30	0	35	5	3	5	40	40	40	45	55	
Drill hole depth	h ₀									$h_0 = h_{ef}$				
Effective	h _{ef,min}		10	00	104	4	11	12	120	128	136	144	160	
anchorage depth	h _{ef,max}	[mm]	50	00	520	0	56	60	600	640	680	720	800	
Minimum spacing and minimum edge distance	S _{min} = C _{min}		11	0	120	0	13	30	140	160	170	180	200	
Minimum thickness of concrete member	h _{min}			$h_{ef} + 2d_0$										

¹⁾ Both drill bit diameters can be used

Reinforcing bar

of concrete member

- The minimum value of related rib area $f_{R,min}$ must fulfil the requirements of EN 1992-1-1:2004+AC:2010
- The rib height must be within the range: $0.05 \cdot \varphi \le h_{rib} \le 0.07 \cdot \varphi$ (φ = Nominal diameter of the bar , h_{rib} = rib height)

fischer injection system FIS EB
Intended use Installation parameters reinforcing bars

Annex B 4

Table B4: Pa	aramete	ers of c	leani	ing bi	rush	(stee	brus	sn) B	50							
Drill bit diameter	do	Para and	12	14	16	18	20	24	25	28	30	32	35	40	45	55
Steel brush diameter	d _b	[mm]	14	16	2	.0	25	26	27	30		40		42	47	58

Table B5: Maximum processing time of the mortar and minimum curing time (During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature)

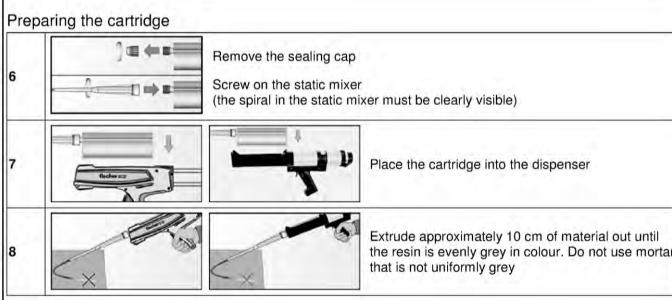
System temperature [°C]	Maximum processing time t _{work} [minutes]	Minimum curing time ¹⁾ t _{cure} [hours]
+5 to +10	120	45
> +10 to +20	30	22
> +20 to +30	14	12
> +30 to +40	7	6

¹⁾ In wet concrete or flooded holes the curing times must be doubled

fischer injection system FIS EB

Intended use

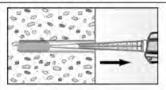
Cleaning tools
Processing times and curing times


Annex B 5

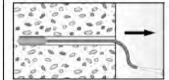
Appendix 10 / 24

Installation instructions part 1 Drilling and cleaning the hole (hammer drilling with standard drill bit) Drill the hole. Drill hole diameter do and drill hole depth ho see Tables B2, B3 Blow out the drill hole twice, with oil-free 2 compressed air (p ≥ 6 bar) Brush the drill hole twice. For drill hole diameter ≥ 30 mm use a power drill. For 3 deep holes use an extension. Corresponding brushes see Table B4 2x Blow out the drill hole twice, with oil-free compressed air (p ≥ 6 bar) Go to step 6 Drilling and cleaning the hole (hammer drilling with hollow drill bit) Check a suitable hollow drill (see Table B1) for correct operation of the dust extraction Use a suitable dust extraction system, e.g. Bosch GAS 35 M AFC or a comparable dust extraction system with equivalent performance data 2 Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process. Diameter of drill hole do and drill hole depth ho see Tables B2, B3 Go to step 6 fischer injection system FIS EB Annex B 6 Intended use Installation instructions part 1

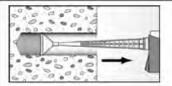
Appendix 11 / 24


Installation instructions part 2 Drilling and cleaning the hole (wet drilling with diamond drill bit) Drill the hole. Drill hole diameter do and Break the drill core drill hole depth ho see and draw it out Tables B2, B3 Flush the drill hole with clean water until it flows clear 2 Blow out the drill hole twice, using oil-free compressed air (p > 6 bar) 3 Brush the drill hole twice using a power drill. Corresponding brushes see Table B4 5 Blow out the drill hole twice, using oil-free compressed air (p > 6 bar) Preparing the cartridge Remove the sealing cap Screw on the static mixer (the spiral in the static mixer must be clearly visible)

the resin is evenly grey in colour. Do not use mortar fischer injection system FIS EB Annex B 7 Intended use Installation instructions part 2 Appendix 12 / 24

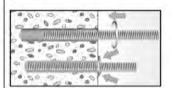

Installation instructions part 3

Injection of the mortar



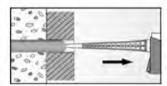
9

Fill approximately 2/3 of the drill hole with mortar. Always begin from the bottom of the hole and avoid bubbles


For drill hole depth ≥ 150 mm use an extension tube

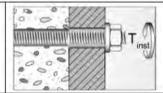
For overhead installation, deep holes $h_0 > 250$ mm or drill hole diameter $d_0 \ge 40$ mm use an injection-adapter

Installation of anchor rods


10

Only use clean and oil-free anchor elements. Mark the setting depth of the anchor. Press the threaded rod down to the bottom of the hole, turning it slightly while doing so. After inserting the anchor element, excess mortar must be emerged around the anchor element. If not, pull out the anchor element immediately and reinject mortar

For overhead installations support the anchor rod with wedges. (e.g. fischer centering wedges) until the the mortar begins to cure


For push through installation fill the annular gap with mortar

11

Wait for the specified curing time t_{cure} see **Table B5**

12

Mounting the fixture T_{inst,max} see **Table B2**

fischer injection system FIS EB

Intended use Installation instructions part 3 Annex B 8

Appendix 13 / 24

Installation instructions part 4 Installation reinforcing bars 000000 Only use clean and oil-free reinforcing bars. Mark the setting depth. Turn while using force to push the reinforcing bar into the filled hole up to the setting depth mark 001000 10 When the setting depth mark is reached, excess mortar must be emerged from the mouth of the drill hole. If not, pull out the anchor element immediately and reinject mortar 0000000 Wait for the specified curing time 11 t_{cure} see Table B5 fischer injection system FIS EB Annex B 9 Intended use Installation instructions part 4 Appendix 14 / 24

Table C1: Characteristic values for the steel bearing capacity under tensile / shear load of fischer anchor rods and standard threaded rods Size **M8** M10 M12 M14 M16 M20 **M22** M24 **M27** M30 Bearing capacity under tensile load, steel failure 5.8 Charact.bearing Steel zinc plated 8.8 capacity N_{Rk,} **Property** [kN] class Stainless steel Partial safety factors¹⁾ 5.8 1,50 Steel zinc plated Partial safety 8.8 1.50 **Property** 2,86 [-] class Stainless steel 1,87 A4 1.60 Bearing capacity under shear load, steel failure without lever arm 5.8 Charact.bearing Steel zinc plated 8.8 Property [kN] class Stainless steel A4 Duktilitätsfaktor gemäß CEN/TS 1,0 [-] k_2 1992-4-5:2009 Abschnitt 6.3.2.1 with lever arm 5.8 Charact. bending Steel zinc plated moment M⁰Rk,s 8.8 **Property** [Nm] class Stainless steel **A4** Partial safety factors1) 5.8 1,25 Steel zinc plated Partial safety 8.8 1,25 **Property** 2,38 [-] class Stainless steel 1,56 A4 1,33 1) In absence of other national regulations fischer injection system FIS EB Annex C 1 **Performances** Characteristic steel bearing capacity of fischer anchor rods and Appendix 15 / 24 standard threaded rods

Table C2: Characteristic values for the steel bearing	capacity under tensile /
shear load of reinforcing bars	

Nominal diameter of the bar		ф	8	10	0 12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Bearing capacity under tensile	load, ste	el fail	ure																
Characteristic bearing capacity	$N_{Rk,s}$	[kN]								A,	· f _u	1) k							
Bearing capacity under shear lo	oad, stee	l failu	ire																
without lever arm																			
Characteristic bearing capacity	$V_{Rk,s}$	[kN]								0,5 ·	As	· f uk)						
Ductility factor acc. to CEN/TS 1992-4-5:2009 Section 6.3.2.1	k ₂	[-]									0,8								
with lever arm																			
Characteristic bending moment	${\sf M^0}_{\sf Rk,s}$	[Nm]								1,2 ·	W_{el}	· f _{uk}	1)						

 $^{^{1)}}$ f_{uk} or f_{yk} respectively must be taken from the specifications of the reinforcing bar

fischer injection system FIS EB

Table C3: General design factors for the bearing capacity under tensile /	
shear load; uncracked or cracked concrete	

Size											ΑII	Siz	es						
Bearing capacit	ty under tensile lo	ad																	
Factors acc. to	CEN/TS 1992-4:20	09 Se	ction 6	.2.2	.3														
Uncracked conc	rete	k _{ucr}									1	0,1							
Cracked concret	е	k _{cr}	[-]									7,2							
Factors for the	compressive stre	ngth o	f conc	rete	>	C20	25												
_	C25/30										1	,02	<u> </u>						
	C30/37										1	,04							
Increasing – factor –	C35/45	Ψ_{c}	[-]	1,06															
for τ_{Bk}	C40/50	Tc	נ־ז								1	,07	<u>, </u>						
_	C45/55										1	,08	3						
	C50/60										1	,09)						
Splitting failure																			
_	h / h _{ef} ≥ 2,0										1,	,0 h	ef						
Edge distance _	$2.0 > h / h_{ef} > 1.3$	$\mathbf{c}_{cr,sp}$	[mm]	4,6 h _{ef} - 1,8 h															
		[]	2,26 h _{ef}																
Spacing		S _{cr,sp}		2 c _{cr,sp}															
	ty under shear loa	d																	
Installation safe	ety factors																		
		γ_2																	
All installation co	onditions	=	[-]									1,0							
Concrete pry-o	ut failure	γ̃inst																	
Factor k acc. to																			
Section 5.2.3.3 CEN/TS 1992-4- Section 6.3.3	resp. k_3 acc. to	k ₍₃₎	[-]								;	2,0							
Concrete edge	failure																		
The value of h _{ef} under shear load			[mm]								min ((h _{ef}	(8d)						
Calculation diam	eters																		
Size				M	8	M1	0	M12	M	14	M16	1 6	/ 120	M	22	M2	4	M27	M30
fischer anchor rods and standard threaded rods d		d	[mm]			10	,	12	1	4	16		20	2	2	24		27	30
Nominal diamete	er of the bar		ф	8	10	12	14	4 16	18	20	22	24	25	26	28	30	32	34	36 40
			 		-	12	-	4 16		_	-	24	_		28	_		-	36 40

fischer	injection	system	FIS	EB
---------	-----------	--------	-----	----

General design factors relating to the characteristic bearing capacity under tensile / shear load

Annex C 3

Appendix 17 / 24

Table C4: Characteristic values of resistance for fischer anchor rods and standard threaded rods under tensile load in hammer or diamond drilled holes; uncracked or cracked concrete

Size			M8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Combined pullout and co	ncrete cone	failure										
Calculation diameter	d	[mm]	8	10	12	14	16	20	22	24	27	30
Uncracked concrete				•								
Characteristic bond resis	tance in un	cracked	concre	ete C2	0/25							
Hammer-drilling with standa	ard drill bit o	r hollow d	Irill bit	(dry an	d wet	concre	te)					
	$ au_{ m Rk,ucr}$	[N/mm ²]	11	10	10	9	9	8	8	8	7,5	7,5
Hammer-drilling with standa	ard drill bit o	r hollow d	Irill bit	(floode	d hole)						
	$\tau_{Rk,ucr}$	[N/mm ²]	11	10	10	9	8	7,5	7	7	6	6
Diamond-drilling (dry and w	,											
	$ au_{Rk,ucr}$	[N/mm ²]	11	10	8	7,5	7,5	7	6	6	5,5	5,5
Diamond-drilling (flooded h												
	τ _{Rk,ucr}	[N/mm ²]	11	10	8	7,5	7,5	7	6	6	5,5	5,5
Installation safety factors												
Dry and wet concrete					1	,0				1	,2	
Flooded hole	$\gamma_2 = \gamma_{inst}$	[-]				-	1	,4				
Cracked concrete												
Characteristic bond resis	tance in cra	cked co	ncrete	C20/2	5							
Hammer-drilling with standa	ard drill bit o	r hollow d	Irill bit	and dia	amond	-drilling	dry a	ınd we	t concr	ete)		
	$ au_{Rk,cr}$	[N/mm ²]	5	5	5	5	4	4	5	5	5	5
Hammer-drilling with standa	ard drill bit o	r hollow d	Irill bit	and dia	mond	-drilling	(flood	ed hol	<u>e)</u>			
	$ au_{Rk,cr}$	[N/mm ²]	4	5	5	5	4	4	4	4	4	4
Installation safety factors		<u> </u>					'					
Dry and wet concrete		.,			1	,0				1	,2	
Flooded hole	$\gamma_2 = \gamma_{inst}$	[-]			1,2					1,4		

Characteristic values for static or quasi-static action under tensile load for fischer anchor rods and standard threaded rods (uncracked or cracked concrete)

Annex C 4

Table C5: Characteristic val in hammer or dia															_	ba	rs		
Nominal diameter of the bar		ф	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Combined pullout and concrete	con	e failure																	
Calculation diameter	d	[mm]	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Uncracked concrete																			
Characteristic bond resistance	in ur	ncracked	COI	ncre	te C	20/	25												
Hammer-drilling with standard drill bit or hollow drill bit (dry and wet concrete) τ _{Rk,ucr} [N/mm²] 11 10 10 9 9 9 8 8 8 8 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5																			
τ _R	lk,ucr	[N/mm ²]	11	10	10	9	9	9	8	8	8	8	7,5	7,5	7,5	7,5	7,5	7,5	7
Hammer-drilling with standard dril	l bit o	or hollow	drill	bit (floo	ded	hole	<u>)</u>											
τ _R	lk,ucr	[N/mm ²]	11	10	9	8	7,5	8	7,5	7	7	6	6	6	6	5,5	5,5	5,5	5,5
Diamond-drilling (dry and wet con	crete	as well a	s fl	oode	ed h	ole)													
τ _Β	lk,ucr	[N/mm ²]	11	10	8	7,5	7,5	7	7	6	6	6	5,5	5,5	5,5	5,5	5	5	5
Installation safety factors																			
Dry and wet concrete						1,0								1,	2				
Flooded hole γ_2 =	= γinst	[-]									1,4								
Cracked concrete			<i></i>																
Characteristic bond resistance	in cr	acked co	ncı	ete	C20)/25													
Hammer-drilling with standard dril	l bit d	or hollow	drill	bit a	ınd	dian	nonc	d-dr	illing	(dry	/ an	d w	et co	oncr	ete)				
τι	Rk,cr	[N/mm ²]	5	5	5	5	4	4	4	5	5	5	5	5	5	3,5	3,5	3,5	3,5
Hammer-drilling with standard dril	l bit o	or hollow	drill	bit a	ınd (dian	nonc	d-dr	illing	(flo	ode	d ho	ole)						
τι	Rk,cr	[N/mm ²]	4	4,5	4,5	4	4	4	4	4	4	4	4	4	4	3,5	3,5	3,5	3,5
Installation safety factors						•													
Dry and wet concrete	575					1,0								1,	,2				
Flooded hole γ_2 =	= γ _{inst}	[-]			1,	,2								1,4					

fischer	injection	system	FIS EB
---------	-----------	--------	--------

Characteristic values for static or quasi-static action under tensile load for reinforcing bars (uncracked or cracked concrete)

Annex C 5

Appendix 19 / 24

Table C	6: Displace	ments	for ancl	nor rod	s						
Size		M8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Displace	ment-Factors	for tens	ile load ¹⁾								
Uncrack	ed or cracked	concrete	Э								
$\delta_{\text{N0-Factor}}$	[mm/(N/mm²)]	0,07	0,08	0,09	0,09	0,10	0,11	0,11	0,12	0,12	0,13
$\delta_{\text{N}\infty\text{-Factor}}$	[[[[[[]]]	0,11	0,12	0,13	0,14	0,15	0,16	0,17	0,18	0,19	0,19
Displace	ment-Factors	for shea	r load ²⁾								
Uncrack	ed or cracked	concrete	Э								
$\delta_{\text{V0-Factor}}$	[mm/kN]	0,18	0,15	0,12	0,10	0,09	0,07	0,07	0,06	0,05	0,05
$\delta_{\text{V}\infty\text{-Factor}}$	[IIIII/KIN]	0,27	0,22	0,18	0,16	0,14	0,11	0,10	0,09	0,08	0,07

1) Calculation of effective displacement:

$$\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$$

$$\delta_{N\infty} = \delta_{N\infty\text{-Factor}} \cdot \tau_{Ed}$$

 $(\tau_{Ed}$: Design value of the applied tensile stress)

²⁾ Calculation of effective displacement:

$$\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$$

$$\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{Ed}$$

(V_{Ed}: Design value of the applied shear force)

Table C7: Displacements for reinforcing bars

		100																
Nominal of the ba	diameter ar	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Displace	ment-Factors	for t	ensile	e load	11)													
Uncrack	Incracked or cracked concrete																	
$\delta_{\text{N0-Factor}}$	[mm/(N//mm ²)	0,07	0,08	0,09	0,09	0,10	0,10	0,11	0,11	0,12	0,12	0,12	0,13	0,13	0,13	0,14	0,14	0,15
$\delta_{\text{N}\infty\text{-Factor}}$	[[111117(1 3 /111111).	0,11	0,12	0,13	0,14	0,15	0,16	0,16	0,17	0,18	0,18	0,18	0,19	0,19	0,20	0,20	0,21	0,22
	ment-Factors	for s	hear	load	2)						, ,							
Uncrack	ed or cracked	cond	crete											cc		V		·
$\delta_{\text{V0-Factor}}$	[mm/kN]]	0,18	0,15	0,12	0,10	0,09	0,08	0,07	0,07	0,06	0,06	0,06	0,05	0,05	0,05	0,04	0,04	0,04
δ _{V∞-Factor}	[mm/kN]	0,27	0,22	0,18	0,16	0,14	0,12	0,11	0,10	0,09	0,09	0,08	0,08	0,07	0,07	0,06	0,06	0,05
						-												

1) Calculation of effective displacement:

$$\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$$

$$\delta_{N^\infty} = \delta_{N^\infty\text{-Factor}} \, \cdot \, \tau_{\text{Ed}}$$

 $(\tau_{Ed}$: Design value of the applied tensile stress)

²⁾ Calculation of effective displacement:

$$\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$$

$$\delta_{\text{V}\infty} = \delta_{\text{V}\infty\text{-Factor}} \cdot \text{V}_{\text{Ed}}$$

(V_{Ed}: Design value of the applied shear force)

fischer injection system FIS EB

Performances

Displacements for anchor rods and reinforcing bars

Annex C 6

Appendix 20 / 24

Table C8: Characteristic values for the steel bearing capacity of fischer anchor rods and standard threaded rods under seismic action performance category C1 or C2

Size					M10	M12	M14	M16	M20	M22	M24	M27	M30
Bearing	capacity under te	nsile load, s	teel	failur	e ¹⁾								
fischer a	nchor rods and s	tandard thre	eaded	d rod	s, perf	orman	ce cate	gory C	1				
Steel zinc plated		5.8		29	43	58	79	123	152	177	230	281	
arir Rk,s,(Oteer zine plated		8.8		47	68	92	126	196	243	282	368	449
ty N	Otal da a a a la al	Property class	50	[kN]	29	43	58	79	123	152	177	230	281
Charact.bearing capacity NRK,S,C1	Stainless steel A4	Ciass	70		41	59	81	110	172	212	247	322	393
			80		47	68	92	126	196	243	282	368	449
fischer anchor rods and standard threaded rods, performance category C2													
5 0 0	Steel zinc plated		5.8			39		72	108		177		
arir Rk,s,	Sieer zinc plated		8.8			61		116	173		282		
ty N	Otalala aa ataal	Property class	50	[kN]		39		72	108		177		
Charact.bearing capacity N _{RK,S,C2}	Stainless steel A4	Class	70			53		101	152		247		
			80			61		116	173		282		
Bearing capacity under shear load, steel failure without lever arm ¹⁾													
fischer anchor rods, performance category C1													
ng	Steel zinc plated	4	5.8		15	21	29	39	61	76	89	115	141
sari Rk,s,			8.8		23	34	46	63	98	122	141	184	225
Charact.bearing capacity V _{Rk,s,C1}	Stainless steel	Property class	50	[kN]	15	21	29	39	61	76	89	115	141
nara	A4	Ciass	70		20	30	40	55	86	107	124	161	197
			80		23	34	46	63	98	122	141	184	225
Standard	l threaded rods, p	performance		gory									
ng .c.	Steel zinc plated		5.8		11	15	20	27	43	53	62	81	99
eari. Rk.s.		-	8.8		16	24	32	44	69	85	99	129	158
ct.be	Stainless steel	Property class	50	[kN]	11	15	20	27	43	53	62	81	99
Charact.bearing capacity V _{Rk,s,C1}	A4	0.000	70		14	21	28	39	60	75	87	113	138
_			80		16	24	32	44	69	85	99	129	158
	nchor rods and s	tandard thre		d rod	s, perf		ce cate				l -		
ing s,c2	Steel zinc plated		5.8 8.8			14 22		27 44	43 69		62 99		
bear V _{Rk,4}		Property	50			14		27	43		62		
act.l	Stainless steel	class	70	[kN]		20		39	60		87		
Charact.bearing capacity V _{Rk,s,C2}	A4		80			22		44	69		99		
			80			22		44	09		99		

¹⁾ Partial safety factors for performance category C1 or C2 see Table C10, for fischer anchor rods FIS A / RGM the factor for steel ductility is 1,0

fischer injection system FIS EB

Performances

Characteristic steel bearing capacity of fischer anchor rods and standard threaded rods under seismic action (performance category C1 or C2)

Annex C 7

Appendix 21 / 24

Table C9: Characteristic values for the steel bearing capacity of reinforcing bars (B500B)
under seismic action performance category C1

Nominal diameter of the bar	ф	10	12	14	16	18	20	22	24	25	26	28	30	32
Bearing capacity under tensile load, steel failure ¹⁾														
Reinforcing bar B500B acc. to DIN 488-2:2009-08, performance category C1														
Characteristic bearing capacity N _{Rk,s,C1}	[kN]	44	63	85	111	140	173	209	249	270	292	339	389	443
Bearing capacity under shear load, steel fa	ilure	with	out	leve	r arm	1)								
Reinforcing bar B500B acc. to DIN 488-2:2009-08, performance category C1														
Characteristic bearing capacity V _{Rk,s,C1}	[kN]	15	22	30	39	49	61	74	88	95	102	119	137	155

¹⁾ Partial safety factors for performance category C1 see Table C10

Table C10: Partial safety factors of fischer anchor rods, standard threaded rods and reinforcing bars (B500B)

under seismic action performance category C1 or C2

Size					M10	N	112	M14	М	16	M20	M	22	M24	M2	7 1	M30
Nominal	diameter of the bar	r		ф	10	12	14	16	18	20	22	24	25	26	28	30	32
Bearing of	apacity under ten	sile load, s	teel f	ailuı	re ¹⁾												
ctor	Steel zinc plated		5.8 8.8								1,50 1,50						
Partial safety factor Yms,N	Stainless steel A4	Property class	50								2,86						
		Class	70	[-]	1,87												
			80								1,60						
ď	Reinforcing bar ²⁾	B	B500B		1,40												
Bearing of	apacity under she	ar load, st	eel fa	ilure	¹⁾												
_	Steel zinc plated		5.8		1,25												
icto	Steer zinc plated		8.8								1,25						
ety fa		Property class	50								2,38						
Partial safety factor ? ^{Ms,V}	Stainless steel A4	Ciass	70	[-]							1,56						
			80								1,33						
_ ₾	Reinforcing bar ²⁾ B50		500B		1,50												

¹⁾ In absence of other national regulations

fischer injection system FIS EB

Performances

Characteristic steel bearing capacity of reinforcing bars under seismic action (performance category C1); partial safety factors (performance category C1 or C2)

Annex C 8

Appendix 22 / 24

²⁾ Reinforcing bars only seismic action category C1

Table C11: Characteristic values of resistance for fischer anchor rods and standard threaded rods in hammer drilled holes under seismic action performance category C1

Size			M10	M12	M14	M16	M20	M22	M24	M27	M30		
Characteristic bond resistance, combined pullout and concrete cone failure													
Hammer-drilling with standard drill bit or hollow drill bit (dry and wet concrete)													
	τ _{Rk,C1}	[N/mm ²]	4,9	4,9	4,6	4,0	4,0	4,6	4,6	4,6	4,6		
Hammer-drilling with standard drill bit or hollow drill bit (flooded hole)													
	τ _{Rk,C1}	[N/mm ²]	4,7	4,7	4,5	4,0	4,0	4,0	4,0	4,0	4,0		
Installation safety factors													
Bearing capacity under te	ensile load												
Dry and wet concrete				1,0						1,2			
Flooded hole	$\gamma_2 = \gamma_{inst}$	[-]		1	,2				1,4				
Bearing capacity under s	hear load												
All installation conditions	$\gamma_2 = \gamma_{inst}$	[-]					1,0						

Table C12: Characteristic values of **resistance** for **reinforcing bars** in hammer drilled holes under seismic action performance category **C1**

Nominal diameter of the b	ar	ф	10	12	14	16	18	20	22	24	25	26	28	30	32
Characteristic bond resistance, combined pullout and concrete cone failure															
Hammer-drilling with standard drill bit or hollow drill bit (dry and wet concrete)															
	τ _{Rk,C1}	[N/mm ²]	4,9	4,9	4,6	4,0	4,0	4,0	4,6	4,6	4,6	4,6	4,6	4,6	3,4
Hammer-drilling with standard drill bit or hollow drill bit (flooded hole)															
	τ _{Rk,C1}	[N/mm ²]	4,7	4,7	4,1	4,1	4,0	4,0	4,0	4,0	4,0	4,0	4,0	4,0	3,4
Installation safety factors															
Bearing capacity under te	nsile load														
Dry and wet concrete					1,	,0						1,2			
Flooded hole	$\gamma_2 = \gamma_{inst}$	[-]			1,2				1,4						
Bearing capacity under sh	near load														
All installation conditions	$\gamma_2 = \gamma_{inst}$	[-]							1,0						

fischer	injection	system	FIS	EB
---------	-----------	--------	-----	----

Characteristic values under seismic action (performance category C1) for fischer anchor rods, standard threaded rods and reinforcing bars

Annex C 9

Table C13: Characteristic values of resistance for fischer anchor rods and standard threaded rods in hammer drilled holes under seismic action performance category C2

Size			M12	M16	M20	M24					
Characteristic bond resistance	e, com	bined pu	illout and conci	ete cone failure							
Hammer-drilling with standard	drill b	it or hol	low drill bit (dry	and wet concre	ete)						
τι	Rk,C2	[N/mm ²]	1,5	2,5	1,3	1,7					
Hammer-drilling with standard drill bit or hollow drill bit (flooded hole)											
τι	Rk,C2	[N/mm ²]	1,6	2,5	1,3	1,4					
Installation safety factors											
Bearing capacity under tensile	load										
Dry and wet concrete				1,0		1,2					
Flooded hole	$=\gamma_{\rm inst}$	[-]	1,	,2	1,	4					
Bearing capacity under shear I	load										
All installation conditions γ ₂	$=\gamma_{inst}$	[-]		1	,0						
Displacement-Factors for tens	ile loa	d ¹⁾									
$\delta_{\text{N,(DLS)-Factor}}$	[ma ma //	(N.L/22 222)]	0,09	0,10	0,11	0,12					
$\delta_{N,(ULS) ext{-}Factor}$][mm/([N/mm²)]	0,15	0,17	0,17	0,18					
Displacement-Factors for shea	r load	2)									
$\delta_{V,(DLS) ext{-}Factor}$	[m	m /L/N II	0,18	0,10	0,07	0,06					
$\delta_{V,(ULS) ext{-}Factor}$] ["""	m/kN]	0,25	0,14	0,11	0,09					

1)	Calculation	Ωf	effective	disnl	acement	
,	Calculation	OI	CHECHVE	uisui	acement	

 $\delta_{\text{N,(DLS)}} = \delta_{\text{N,(DLS)-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N,(ULS)}} = \delta_{\text{N,(ULS)-Factor}} \cdot \tau_{\text{Ed}}$

 $(\tau_{\text{Ed}}$: Design value of the applied tensile stress)

 $\delta_{V,(DLS)} = \delta_{V,(DLS)\text{-Factor}} \cdot V_{Ed}$

 $\delta_{V,(ULS)} = \delta_{V,(ULS)\text{-Factor}} \cdot V_{Ed}$

(V_{Ed}: Design value of the applied shear force)

fischer injection system FIS EB

Performances

Characteristic values under seismic action (performance category C2) for fischer anchor rods and standard threaded rods

Annex C 10

Appendix 24 / 24