

ΕN

DECLARATION OF PERFORMANCE

1. Unique identification code of the product-type:

DoP 0317

for fischer injection system FIS AB (Bonded fastener for use in concrete)

DoP 0317

2. Intended use/es: Post-installed fastening in cracked or uncracked concrete, see appendix, especially

annexes B1 - B9.

3. Manufacturer: fischerwerke GmbH & Co. KG, Otto-Hahn-Straße 15, 79211 Denzlingen, Germany

4. Authorised representative:

5. System/s of AVCP: 1

6. European Assessment Document: EAD 330499-01-0601, Edition 04/2020

European Technical Assessment: ETA-17/0350; 2022-07-29

Technical Assessment Body: DIBt- Deutsches Institut für Bautechnik

Notified body/ies: 2873 TU Darmstadt

7. Declared performance/s:

Mechanical resistance and stability (BWR 1)

Characteristic resistance to tension load (static and quasi-static loading):

Resistance to steel failure: Annexes C1 - C3

Resistance to combined pull- out and concrete cone failure: Annexes C4 - C6

Resistance to concrete cone failure: Annex C4

Edge distance to prevent splitting under load: Annex C4

Robustness: Annexes C4 - C6

Maximum installation torque: Annexes B3, B4

Minimum edge distance and spacing: Annexes B3 - B5

Characteristic resistance to shear load (static and quasi-static loading):

Resistance to steel failure: Annexes C1 - C3 Resistance to pry-out failure: Annex C4 Resistance to concrete edge failure: Annex C4

Displacements under short-term and long-term loading:

Displacements under short-term and long-term loading: Annexes C7, C8

Characteristic resistance and displacements for seismic performance categories C1 and C2:

Resistance to tension load, displacements, category C1: NPD Resistance to tension load, displacements, category C2: NPD Resistance to shear load, displacements, category C1: NPD Resistance to shear load, displacements, category C2: NPD

Factor annular gap: NPD

Hygiene, health and the environment (BWR 3)

Content, emission and/or release of dangerous substances: NPD

8. Appropriate Technical Documentation and/or

Specific Technical Documentation:

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Dr.-Ing. Oliver Geibig, Managing Director Business Units & Engineering

Tumlingen, 2022-10-24

Jürgen Grün, Managing Director Chemistry & Quality

This DoP has been prepared in different languages. In case there is a dispute on the interpretation the English version shall always prevail.

The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Fischer DATA DOP_ECs_V73.xlsm 1/1

Specific Part

1 Technical description of the product

The "fischer injection system FIS AB" is a bonded fastener consisting of a cartridge with injection mortar fischer FIS AB, fischer FIS AB High Speed or fischer FIS AB Low Speed and a steel element according to Annex A4.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

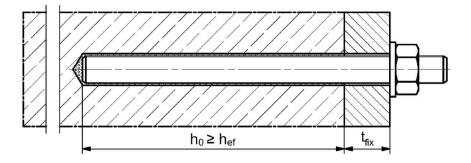
3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 3 to B 5, C 1 to C 6
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 to C 4
Displacements under short-term and long-term loading	See Annex C 7 and C 8
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

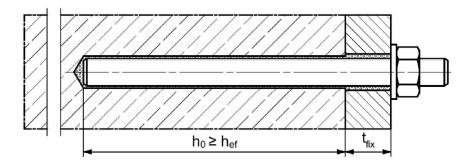
3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

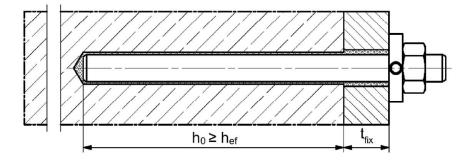
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base


In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1


Installation conditions part 1

fischer anchor rod


Pre-positioned installation

Push through installation (annular gap filled with mortar)

Pre-positioned or push through installation with subsequently injected fischer filling disc (annular gap filled with mortar)

Figures not to scale

 h_0 = drill hole depth

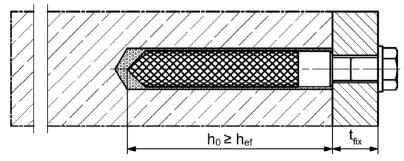
 t_{fix} = thickness of fixture

 h_{ef} = effective embedment depth

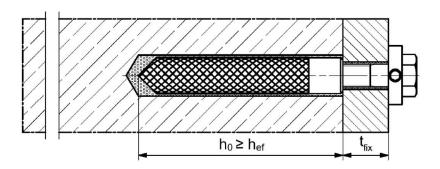
fischer injection system FIS AB

Product description

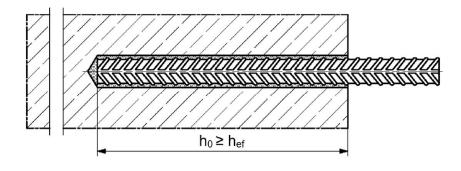
Installation conditions part 1


Annex A 1

Appendix 3 / 24


Installation conditions part 2

fischer internal threaded anchor RG M I


Pre-positioned installation

Pre-positioned installation with subsequently injected fischer filling disc (annular gap filled with mortar)

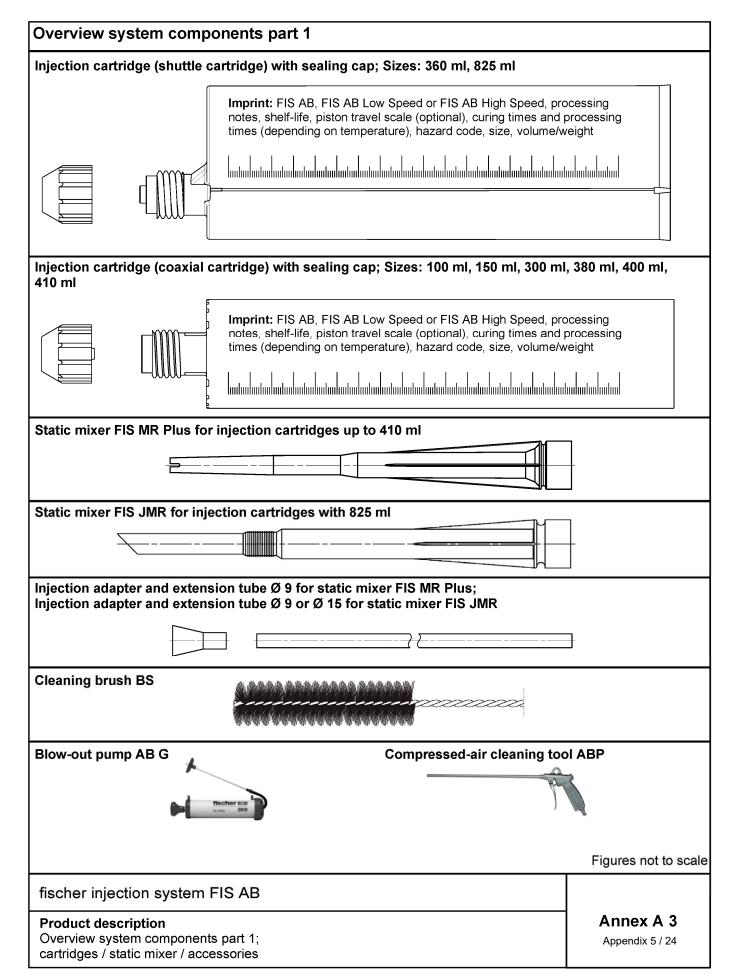
Reinforcing bar

Figures not to scale

 h_0 = drill hole depth

 t_{fix} = thickness of fixture

h_{ef} = effective embedment depth


fischer injection system FIS AB

Product description

Installation conditions part 2

Annex A 2

Appendix 4 / 24

Overview system components part 2 fischer anchor rod Size: M6, M8, M10, M12, M16, M20, M24, M27, M30 fischer internal threaded anchor RG M I Size: M8, M10, M12, M16, M20 Screw / threaded rod / washer / hexagon nut fischer filling disc with injection adapter Reinforcing bar Nominal diameter: \$\phi 8\$, \$\phi 10\$, \$\phi 12\$, \$\phi 14\$, \$\phi 16\$, \$\phi 20\$ Figures not to scale fischer injection system FIS AB Annex A 4 **Product description** Overview system components part 2; Appendix 6 / 24 metal parts, injection adapter

Part	Designation		Material						
1	Injection cartridge	Mortar, hardener, filler							
		Steel	Stainless steel R	High corrosion resistant steel HCR					
	Steel grade	zinc plated	acc. to EN 10088-1:2014 Corrosion resistance class CRC III acc. to EN 1993-1-4: 2006+A1:2015	acc. to EN 10088-1:2014 Corrosion resistance class CRC V acc. to EN 1993-1-4: 2006+A1:2015					
2	Anchor rod	Property class 4.6, 4.8, 5.8 or 8.8; EN ISO 898-1:2013 electroplated ≥ 5 μ m, EN ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 μ m EN ISO 10684:2004+AC:2009 $f_{uk} \le 1000 \text{ N/mm}^2$ A ₅ > 8% fracture elongation	Property class 50, 70 or 80 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462; EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ A ₅ > 8% fracture elongation	Property class 50 or 80 EN ISO 3506-1:2020 or property class 70 with f_{yk} = 560 N/mm ^{2;} 1.4565; 1.4529; EN 10088-1:2014 $f_{uk} \le 1000$ N/mm ² $A_5 > 8\%$ fracture elongation					
3	Washer ISO 7089:2000	electroplated \geq 5 µm, EN ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised \geq 40 µm EN ISO 10684:2004+AC:2009	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565; 1.4529; EN 10088-1:2014					
4	Hexagon nut	Property class 4, 5 or 8 acc. EN ISO 898-2:2012 electroplated ≥ 5 µm, EN ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 µm EN ISO 10684:2004+AC:2009	Property class 50, 70 or 80 acc. EN ISO 3506-2:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Property class 50, 70 or 80 acc. EN ISO 3506-2:2020 1.4565; 1.4529 EN 10088-1:2014					
5	fischer internal threaded anchor RG M I	Property class 5.8 ISO 898-1:2013 electroplated ≥ 5 μm, EN ISO 4042:2018/Zn5/An(A2K)	Property class 70 EN ISO 3506-1:2020; 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Property class 70 EN ISO 3506-1:2020 1.4565; 1.4529; EN 10088-1:2014					
6	Commercial standard screw or threaded rod for fischer internal threaded anchor RG M I	Property class 5.8 or 8.8; EN ISO 898-1:2013 electroplated ≥ 5 μm, EN ISO 4042:2018/Zn5/An(A2K) A₅ > 8 % fracture elongation	Property class 70 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014 A ₅ > 8 % fracture elongation	Property class 70 EN ISO 3506-1:2020 1.4565; 1.4529; EN 10088-1:2014 A₅ > 8 % fracture elongation					
7	fischer filling disc	electroplated ≥ 5 µm, EN ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 µm EN ISO 10684:2004+AC:2009	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565;1.4529; EN 10088-1:2014					
8	Reinforcing bar EN 1992-1- 1:2004 and AC:2010, Annex C	Bars and de-coiled rods, class B of fyk and k according to NDP or NC fuk = ftk = k · fyk (As > 8%)		04/NA					

fischer	injection	system	FIS AB
---------	-----------	--------	--------

Specifications of intended use part 1

 Table B1.1:
 Overview use and performance categories

				FIS AB with Anchor rod fischer internal threaded Reinforcing bar								
			Ancho	r rod	Reinford	cing bar						
Hammer drilling with standard dr bit	ill	E4440000000		all sizes								
Hammer drilling with hollow drill l	oit											
(fischer "FHD", I Expert"; Bosch " Hilti "TE-CD, TE DreBo "D-Plus",	Spe -YD	ed Clean"; ",	Nominal drill bit diameter (d₀) 12 mm to 35 mm									
Static and quasi		uncracked concrete	all sizes	Tables: C1.1 C4.1	all sizes	Tables: C2.1 C4.1	all sizes	Tables: C3.1 C4.1				
static loading, in		cracked concrete	M8 to M20	C5.1 C7.1	_1)	C6.1 C7.2	φ 10 to φ 20	C6.2 C8.1				
Seismic performance		C1	_1)									
category		C2										
Use	l1 	dry or wet concrete	1 211 S17 C S									
category	12	water filled hole ²⁾	M 12 to	M 30	all s	izes	_1)					
Installation direc	tion		D3 (downward a	nd horizontal	and upwards	(e.g. overhea	d))				
Installation temp	era	ture		Ti	_{,min} = -10 °C to	$T_{i,max} = +40$	°C					
Service		Temperature range I	-40 °C t	co +80 °C	(max. short term temperature +80 °C; max. long term temperature +50 °C)							
temperature		Temperature range II	-40 °C to	o +120 °C			erature +120 ° rature +72 °C)					
Installation temp		ture Temperature range I Temperature	-40 °C t	T _i	min = -10 °C to (max. sho max. long (max. sho	ort term temper g term temper ort term temper	°C erature +80 °C rature +50 °C) erature +120 °	;; C;				

¹⁾ Performance not assessed

fischer injection system FIS AB

Intended use

Specifications part 1

Annex B 1

Appendix 8 / 24

²⁾ Valid for shuttle cartridges with 360 ml, 825 ml and coaxial cartridges with 380 ml, 400 ml, 410 ml

Specifications of intended use part 2

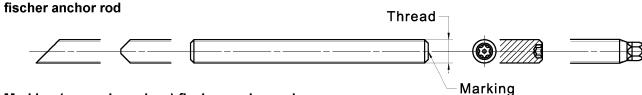
Base materials:

 Compacted reinforced or unreinforced normal weight concrete without fibres of strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- For all other conditions according to EN1993-1-4:2006+A1:2015 corresponding to corrosion resistance classes to Annex A 5 Table 5.1.

Design:

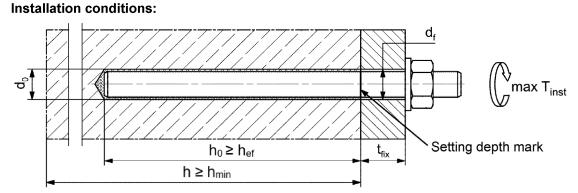

- Fastenings are designed under the responsibility of an engineer experienced in fastenings and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored.
 The position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to reinforcement or to supports, etc.).
- Fastenings are designed in accordance with:
 EN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018.

Installation:

- Fastener installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Fastening depth should be marked and adhered to installation
- Overhead installation is allowed (necessary equipment see installation instruction)

fischer	injection	system	FIS AB
---------	-----------	--------	--------

Table B3.1:	Table B3.1: Installation parameters for anchor rods											
Anchor rods			Thread	М6	M8	M10	M12	M16	M20	M24	M27	M30
Nominal drill hole	diameter	d o		8	10	12	14	18	24	28	30	35
Drill hole depth		h_0						h₀ ≥ he				
Effective		h _{ef, min}		50	60	60	70	80	90	96	108	120
embedment depth		h _{ef, max}		72	160	200	240	320	400	480	540	600
Minimum spacing and minimum edge distance		Smin = Cmin	[mm]	40	40	45	55	65	85	105	125	140
Diameter of the clearance hole of	pre-positioned installation	d _f		7	9	12	14	18	22	26	30	33
the fixture	push through installation	df		9	12	14	16	20	26	30	33	40
Minimum thickness of concrete member		h _{min}		ŀ	h _{ef} + 30 (≥100) h _{ef} + 2d ₀						0	
Maximum installat	ion torque	max T _{inst}	[Nm]	5	10	20	40	60	120	150	200	300

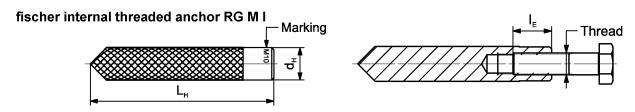


Marking (on random place) fischer anchor rod:

Steel zinc plated PC ¹⁾ 8.8	• or +	Steel hot-dip PC ¹⁾ 8.8	•
High corrosion resistant steel HCR PC ¹⁾ 50	•	High corrosion resistant steel HCR PC ¹⁾ 70	-
High corrosion resistant steel HCR PC1) 80	(Stainless steel R property class 501)	~
Stainless steel R property class 801)	*		

Alternatively: Colour coding according to DIN 976-1: 2016

¹⁾ PC = property class

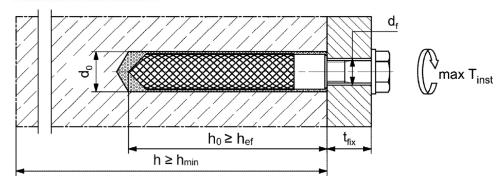


Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:

- Materials, dimensions and mechanical properties according to Annex A 5, Table A5.1
- Inspection certificate 3.1 according to EN 10204:2004, the documents have to be stored
- Setting depth is marked

	rigures not to scale
fischer injection system FIS AB	
Intended use	Annex B 3
Installation parameters anchor rods	Appendix 10 / 24

Table B4.1: Installation	on param	eters f	or fischer i	internal thi	readed and	hors RG N	11
Internal threaded anchors F	RG M I	Thread	М8	M10	M12	M16	M20
Diameter of anchor	$d_{nom} = d_H$		12	16	18	22	28
Nominal drill hole diameter	d_0		14	18	20	24	32
Drill hole depth	h_0				$h_0 \ge h_{\text{ef}} = L_H$		
Effective embedment depth $(h_{ef} = L_H)$	h _{ef}		90	90	125	160	200
Minimum spacing and minimum edge distance	S _{min} = C _{min}	[mm]	55	65	75	95	125
Diameter of clearance hole in the fixture	df		9	12	14	18	22
Minimum thickness of concrete member	h _{min}		120	125	165	205	260
Maximum screw-in depth	$I_{E,max}$		18	23	26	35	45
Minimum screw-in depth	$I_{E,min}$		8	10	12	16	20
Maximum installation torque	max T _{inst}	[Nm]	10	20	40	80	120


Marking: Anchor size e. g.: M10

Stainless steel → additional **R**; e.g.: **M10 R**

High corrosion resistant steel \rightarrow additional HCR; e.g.: M10 HCR

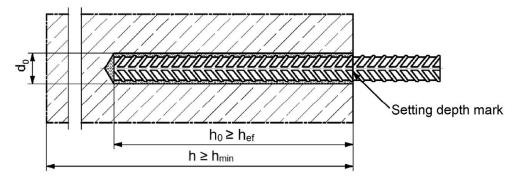
Retaining bolt or threaded rods (including nut and washer) must comply with the appropriate material and strength class of Annex A 5, Table A5.1

Installation conditions:

Figures not to scale

	r igaics not to scale
fischer injection system FIS AB	
Intended use Installation parameters internal threaded anchors RG M I	Annex B 4 Appendix 11 / 24

Table B5.1: Installation parameters for reinforcing bars												
Nominal diameter of the bar		ф	8 ¹⁾		10 ¹⁾		12 ¹⁾		14	16	20	
Nominal drill hole diameter	d ₀		10	12	12	14	14	16	18	20	25	
Drill hole depth	h o							h ₀ ≥	n₀ ≥ h _{ef}			
	$h_{ef,min}$		60		6	0	70		75	80	90	
Effective embedment depth	h _{ef,max}	160		20	0	240		280	320	400		
Minimum spacing and minimum edge distance	S _{min} = C _{min}	[mm]	40		4	5	55		60	65	85	
Minimum thickness of concrete member	h _{min}		h _{ef} + 3 (≥ 100		n _{ef} + 30 ≥ 100				h	lef + 2d ₀		


¹⁾ Both drill hole diameters can be used

Reinforcing bar

- The minimum value of related rib area f_{R,min} must fulfil the requirements of EN 1992-1-1:2004+AC:2010
- The rib height must be within the range: 0,05 · φ ≤ h_{rib} ≤ 0,07 · φ
 (φ = Nominal diameter of the bar, h_{rib} = rib height)

Installation conditions:

Figures not to scale

Intended use

Installation parameters reinforcing bars

Annex B 5

Appendix 12 / 24

Table B6.1: Parameters of the cleaning brush BS (steel brush with steel bristles)

The size of the cleaning brush refers to the drill hole diameter

Nominal drill hole diameter	d₀	[mama]	8	10	12	14	16	18	20	24	25	28	30	35
Steel brush diameter BS	d₀	[mm]	0	11	14	16	2	0	25	26	27	30	4	0

Table B6.2 Maximum processing time of the mortar and minimum curing time (During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature)

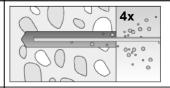
Temperature at	Maxir	num processing t _{work}	g time	Min	imum curing tin t _{cure}	ne ¹⁾
anchoring base [°C]	FIS AB High Speed	FIS AB	FIS AB Low Speed	FIS AB High Speed	FIS AB	FIS AB Low Speed
-10 to -5 ²⁾	-	-	-	12 h	-	-
> -5 to 0 ²⁾	5 min	-	-	3 h	24 h	-
> 0 to 5 ²⁾	5 min	13 min	-	3 h	3 h	6 h
> 5 to 10	3 min	9 min	20 min	50 min	90 min	3 h
> 10 to 20	1 min	5 min	10 min	30 min	60 min	2 h
> 20 to 30	-	4 min	6 min	-	45 min	60 min
> 30 to 40	-	2 min	4 min	-	35 min	30 min

¹⁾ In wet concrete or water filled holes the curing times must be doubled

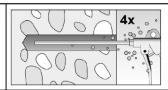
fischer injection system FIS AB

Annex B 6

²⁾ Minimal cartridge temperature +5°C

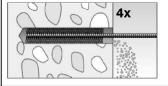

Installation instructions part 1 Drilling and cleaning the hole (hammer drilling with standard drill bit)

1

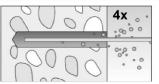

Drill the hole.

Nominal drill hole diameter d₀ and drill hole depth h₀ see tables B3.1, B4.1, B5.1

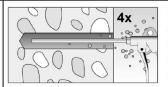
2



Clean the drill hole: For $h_{ef} \le 12d$ and $d_0 < 18$ mm blow out the hole four times by hand


For $h_{ef} > 12d$ and / or $d_0 \ge 18$ mm blow out the hole four times with oil-free compressed air $(p \ge 6 \text{ bar})$

3



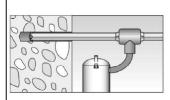
Brush the drill hole four times. For drill hole diameter ≥ 30 mm use a power drill. For deep holes use an extension. Corresponding brushes see **table B6.1**

4

Clean the drill hole: For $h_{ef} \le 12d$ and $d_0 < 18$ mm blow out the hole four times by hand

For $h_{ef} > 12d$ and / or $d_0 \ge 18$ mm blow out the hole four times with oil-free compressed air ($p \ge 6$ bar)

Go to step 5


Drilling and cleaning the hole (hammer drilling with hollow drill bit)

1

Check a suitable hollow drill (see **table B1.1**) for correct operation of the dust extraction

2

Use a suitable dust extraction system, e.g. fischer FVC 35 M or a comparable dust extraction system with equivalent performance data

Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process and must be adjusted to maximum power. Nominal drill hole diameter d₀ and drill hole depth h₀ see tables B3.1, B4.1, B5.1

Go to step 5

fischer injection system FIS AB

Intended use

Installation instructions part 1

Annex B 7

Appendix 14 / 24

Installation instructions part 2 Preparing the cartridge Mark the setting depth. 5 Remove the sealing cap 6 Screw on the static mixer (the spiral in the static mixer must be clearly visible) 7 Place the cartridge into the dispenser Extrude approximately 10 cm of material out until the resin is evenly grey in colour. Do not use 8 mortar that is not uniformly grey Go to step 9 Injection of the mortar 9 For $h_0 = h_{ef}$ fill approximately 2/3 of the drill hole with mortar. For For overhead installation, deep For drill hole depth ≥ 150 mm $h_0 > h_{ef}$ more mortar is needed. holes ($h_0 > 250 \text{ mm}$) use an

Always begin from the bottom of the hole and avoid bubbles

use an extension tube

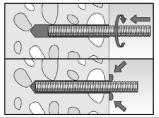
injection adapter

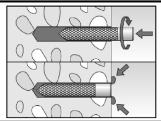
Go to step 10

fischer injection system FIS AB

Intended use

Installation instructions part 2

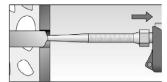

Annex B 8


Appendix 15 / 24

Installation instructions part 3

Installation of anchor rods or fischer internal threaded anchors RG M I

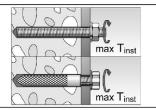
10



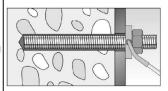
Only use clean and oil-free metal parts. Push the anchor rod or fischer internal threaded RG M I anchor down to the bottom of the hole, turning it slightly while doing so.

After inserting the metal parts, excess mortar must be emerged around the anchor element.

For overhead installations support the metal part with wedges (e.g. fischer centering wedges) or fischer overhead clips.


For push through installation fill the annular gap with mortar

11


Wait for the specified curing time t_{cure} see table B6.2

12

Mounting the fixture max T_{inst} see tables B3.1 and B4.1


Option

After the minimum curing time is reached, the gap between metal part and fixture (annular clearance) may be filled with mortar via the fischer filling disc. Compressive strength ≥ 50 N/mm² (e.g. fischer injection mortars FIS AB, FIS HB, FIS SB, FIS V, FIS V Plus, FIS EM Plus).

ATTENTION: Using fischer filling disc reduces t_{fix} (usable length of the anchor)


Installation reinforcing bars

Only use clean and oil-free reinforcing bars. Push the reinforcement bar with the setting depth mark into the filled hole up to the setting depth mark. Recommendation:

Rotation back and forth of the reinforcement bar or the fischer rebar anchor makes pushing easy

10

When the setting depth mark is reached, excess mortar must be emerged from the mouth of the drill hole.

11

Wait for the specified curing time tcure see table B6.2

fischer injection system FIS AB

Intended use

Installation instructions part 3

Annex B 9

Appendix 16 / 24

Characteristic resistance to steel failure under tension / shear loading of Table C1.1: fischer anchor rods and standard threaded rods Anchor rod / standard threaded rod **M6 M8** M10 M12 M16 **M20 M24 M27** M30 Characteristic resistance to steel failure under tension loading 3) 4.6 15(13) 23(21) Characteristic 4.8 15(13) 23(21) Steel zinc plated Property 5.8 19(17) 29(27) 29(27) 47(43) 8.8 [kN] Stainless steel R and high corrosion resistant steel HCR Partial factors 1) 4.6 2.00 4.8 1.50 Partial factor Steel zinc plated Property 5.8 1.50 8.8 [-] 1.50 Stainless steel R and 2.86 high corrosion 1.502) / 1.87 resistant steel HCR 1.60 Characteristic resistance to steel failure under shear loading 3) without lever arm 4.6 9(8) 14(13) Characteristic 4.8 9(8) 14(13) Steel zinc plated Property 5.8 11(10) 17(16) esistance 8.8 [kN] 15(13) 23(21) Stainless steel R and high corrosion resistant steel HCR **Ductility factor** k_7 [-] 1,0 with lever arm 15(13) 30(27) 4.6 esistance M⁰RK.s Characteristic 4.8 15(13) 30(27) Steel zinc plated Property 5.8 19(16) 37(33) 8.8 [Nm] 30(26) 60(53) Stainless steel R and high corrosion resistant steel HCR Partial factors 1) 4.6 1.67 4.8 1.25 Partial factor Steel zinc plated Property 5.8 1.25 8.8 [-] 1.25 Stainless steel R and 2.38 high corrosion 1.25²⁾ / 1.56 resistant steel HCR 1.33 1) In absence of other national regulations

fischer injection system FIS AB

Performances

Characteristic resistance to steel failure under tension / shear loading of fischer anchor rods and standard threaded rods

Annex C 1

Appendix 17 / 24

²⁾ Only admissible for high corrosion resist. steel HCR, with f_{yk} / $f_{uk} \ge 0.8$ and $A_5 > 12$ % (e.g. fischer anchor rods)

³⁾ Values in brackets are valid for hot dip galvanised fischer anchors and hot dip galvanised standard threaded-rods

Table C2.1: Characteristic resistance to steel failure under tension / shear loading of fischer internal threaded anchors RG M I

fischer internal	thread	led anchors	RG M	I	М8	M10	M12	M16	M20
Characteristic r	esistaı	nce to steel	failure	unde	er tension lo	ading			
		Property	5.8		19	29	43	79	123
Characteristic	N.I.	class	8.8	FLANIT	29	47	68	108	179
resistance with screw	$N_{Rk,s}$	Property	R	[kN]	26	41	59	110	172
00.011		class 70	HCR		26	41	59	110	172
Partial factors ¹⁾									
		Property	5.8				1,50		
Partial factors		class	8.8				1,50		
raniai iaciois	γMs,N	Property	R	[-]			1,87		
		class 70	HCR				1,87		
Characteristic r	esistaı	nce to steel	failure	unde	er shear load	ling			
Without lever a	rm								
		Property	5.8		9,2	14,5	21,1	39,2	62,0
Characteristic	\ / 0	class	8.8	[LNI]	14,6	23,2	33,7	54,0	90,0
resistance with screw	V^0 Rk,s	Property	R	[kN]	12,8	20,3	29,5	54,8	86,0
		class 70	HCR		12,8	20,3	29,5	54,8	86,0
Ductility factor			k 7	[-]			1,0		
With lever arm									
		Property	5.8		20	39	68	173	337
Characteristic resistance with	M ⁰ Rk,s	class	8.8	[Nm]	30	60	105	266	519
screw	IVI Rk,s	Property	R	ן [[יייון] 	26	52	92	232	454
		class 70	HCR		26	52	92	232	454
Partial factors ¹⁾									
		Property	5.8				1,25		
Partial factors	7/84- \/	class	8.8	[-]			1,25		
	γMs,V	Property	R	[-]			1,56		
		class 70	HCR				1,56		

¹⁾ In absence of other national regulations

fischer injection	system FIS AB
-------------------	---------------

Performances

Characteristic resistance to steel failure under shear loading of fischer internal threaded anchor RG M I

Annex C 2

Appendix 18 / 24

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	r loadin	g of
	16	20
Characteristic resistance $V^0_{Rk,s}$ [kN] $k_6^{1)} \cdot A_s \cdot f_{uk}^{2)}$		
Ductility factor k ₇ [-] 1.0		
Educative 10 1,0		
With lever arm		

 $1,2 \cdot W_{el} \cdot f_{uk}^{2}$

Characteristic resistance

M⁰Rk,s [Nm]

fischer injection system FIS AB

Characteristic resistance to steel failure under tension / shear loading of reinforcing bars

Annex C 3

Appendix 19 / 24

¹⁾ In accordance with EN 1992-4:2018 section 7.2.2.3.1

 $k_6 = 0.6$ for fasteners made of carbon steel with $f_{uk} \le 500 \text{ N/mm}^2$

^{= 0,5} for fasteners made of carbon steel with 500 < f_{uk} ≤ 1000 N/mm²

^{= 0,5} for fasteners made of stainless steel

²⁾ f_{uk} respectively must be taken from the specifications of the reinforcing bar

Size						-	All size	s			
Characteristic resistance to cond	rete fa	ailure u	ınder t	ension	loading	9					
Installation factor	γinst	[-]				See an	nex C	5 to C 6			
Factors for the compressive stre	ngth o	f conc	rete >	C20/25							
(C25/30						1,05				
Increasing factor ψ_c for	C30/37						1,10				
cracked or uncracked	C35/45] ,					1,15				
	C40/50	[-]					1,19				
$\tau_{Rk} = \psi_c \cdot \tau_{Rk} (C20/25) $	C45/55						1,22				
(C50/60						1,26				
Splitting failure			ı								
Edge $\frac{h / h_{ef} \ge 2.0}{2.0 \times h / h_{ef} \ge 1.3}$							1,0 h _{et}				
distance $\frac{2,0.7117 \text{ fle f} > 1,3}{2,0.5117 \text{ fle f} > 1,3}$	C cr,sp	[mm]					h _{ef} - 1				
h / h _{ef} ≤ 1,3							2,26 h _€				
Spacing	S cr,sp						2 C _{cr,sp}	1			
Concrete failure											
Uncracked concrete	k _{ucr,N}	[-]					11,0				
Cracked concrete	k cr,N						7,7				
Edge distance	C cr,N	[mm]					1,5 h _{et}				
Spacing	S _{cr,N}						2 C _{cr,N}				
Factors for sustained tension loa	aaing	[[0.01							70 / 4	00	
Temperature range		[°C]			50 / 80				72 / 1		
Factor	ψ^0 sus	[-]			0,74				0,87	,	
Characteristic resistance to cond	crete fa	T	ınder s	hear le	oading						
Installation factor	γinst	[-]					1,0				
Concrete pry-out failure											
Factor for pry-out failure	k 8	[-]					2,0				
Concrete edge failure		Ι	Γ								
Effective length of fastener in shear loading	lf	[mm]			1≤ 24 mi 1> 24 m				mm)		
Calculation diameters											
Size			M6	M8	M10	M12	M16	M20	M24	M27	M3
fischer anchor rods and standard threaded rods	d_{nom}	[mm]	6	8	10	12	16	20	24	27	30
fischer internal threaded anchors RG M I	d_{nom}	[]	_1)	12	16	18	22	28	_1)	_1)	_1
Size (nominal diameter of the bar)	ф	[mm]	8		10	12		14	16		20
Reinforcing bar	d_{nom}	[[[]]]	8		10	12		14	16		20
1) Anchor type not part of this asse	essmer	nt									
fischer injection system FIS	AB								A	nex (

Table C5.1: Characteristic resistance to combined pull-out and concrete failure for fischer anchor rods and standard threaded rods in hammer drilled holes; uncracked or cracked concrete

Anchor rod / standard threa	ded rod		М6	M8	M10	M12	M16	M20	M24	M27	M30
Combined pull-out and con-	crete co	ne failure)								
Calculation diameter	d	[mm]	6	8	10	12	16	20	24	27	30
Uncracked concrete											
Characteristic bond resistar	nce in u	ncracked	concr	ete C20	/25						
Hammer-drilling with standard	l drill bit	or hollow	drill bit	(dry or v	wet con	crete)					
Tem- I: 50 °C / 80 °C		[N]/mayas 21	9,0	11,0	11,0	11,0	10,0	9,5	9,0	8,5	8,5
perature range II: 72 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm ²]	6,5	9,5	9,5	9,0	8,5	8,0	7,5	7,0	7,0
Hammer-drilling with standard	drill bit	or hollow	drill bit	water f	illed ho	le)					
Tem- I: 50 °C / 80 °C		FN1/ 27	_2)	_2)	_2)	9,5	8,5	8,0	7,5	7,0	7,0
range II: 72 °C / 120 °C	τ _{Rk,ucr}	[N/mm ²]	_2)	_2)	_2)	7,5	7,0	6,5	6,0	6,0	6,0
Installation factors		•									
Dry or wet concrete		r.1					1,0				
Water filled hole	γinst	[-]	_2)	_2)	_2)			1,2	2 ¹⁾		
Cracked concrete											
Characteristic bond resistar											
Hammer-drilling with standard	l drill bit	or hollow	drill bit	(dry or v	wet con	<u>crete)</u>			_		
Tem- I: 50 °C / 80 °C		[N]/mayas 27	_2)	5,5	6,0	6,0	6,0	5,5	_2)	_2)	_2)
range II: 72 °C / 120 °C	$ au_{Rk,cr}$	[N/mm ²]	_2)	4,5	5,0	6,0	6,0	5,0	_2)	_2)	_2)
Hammer-drilling with standard	drill bit o	or hollow o	drill bit (water fi	lled hole	<u>e)</u>					
Tem- I: 50 °C / 80 °C		[N]/mm ² 1	_2)	_2)	_2)	5,0	5,0	4,5	_2)	_2)	_2)
perature II: 72 °C / 120 °C	$ au_{Rk,cr}$	[N/mm ²]	_2)	_2)	_2)	4,0	4,0	4,0	_2)	_2)	_2)
Installation factors											
Dry or wet concrete	200	[.1	_2)			1,0			_2)	_2)	_2)
Mater filled halo	γinst	[-]	2)	2)	2)		4 2 1)		2)	2)	2)

rater filled hole

| Time | Compared | Compa

fischer injection system FIS AB

Performances

Characteristic resistance to combined pull-out and concrete failure for fischer anchor rod and standard threaded rods

Annex C 5

Appendix 21 / 24

²⁾ Performance not assessed

	tic resistance ernal thread concrete		•				for
Internal threaded anchor RG M		M8	M10	M	12	M16	M20
Combined pull-out and concre							
Calculation diameter	d [mm]	12	16	1	8	22	28
Uncracked concrete							
Characteristic bond resistance	in uncracked	concrete C	20/25				
Hammer-drilling with standard dr	ill bit or hollow	drill bit (dry	or wet cond	<u> </u>			
Tem- I: 50 °C / 80 °C		10,5	10,0		.5	9,0	8,5
	Rk,ucr [N/mm²]		8,0	8,		7,5	7,0
Hammer-drilling with standard dr	ill bit or hollow	drill bit (wate	er filled hol	<u>e)</u>			
Tem- I: 50 °C / 80 °C		10,0	9,0	9,	,0	8,5	8,0
perature range II: 72 °C / 120 °C τ	Rk,ucr [N/mm ²]	7,5	6,5	6,		6,0	6,0
Installation factors	-						
Dry or wet concrete	Yinst [-]			1,			
Water filled hole	,			,	2 1)		
1) Valid for shuttle cartridges w	th 360 ml, 825	ml and coa	xial cartrido	ges with 380	0 ml, 400 r	nl, 410 ml	
	tic resistance , bars in ham		•				
Nominal diameter of the bar	ф	8	10	12	14	16	20
Combined pull-out and concre	•)					
Calculation diameter	d [mm]	8	10	12	14	16	20
Uncracked concrete							
Characteristic bond resistance	in uncracked	concrete C	20/25				
Hammer-drilling with standard dr	ill bit or hollow	drill bit (dry	or wet cond	crete)			
Tem- I: 50 °C / 80 °C		11,0	11,0	11,0	10,0	10,0	9,5
perature II: 72 °C / 120 °C	Rk,ucr [N/mm ²]	9,5	9,5	9,0	8,5	8,5	8,0
Installation factor			-,-	•,-	-,-		
	Yinst [-]			1,	<u>n</u>		
Cracked concrete	luar F1			- ,	,0		
Characteristic bond resistance	in cracked co	oncrete C20	1/25				
Hammer-drilling with standard dr				crete)			
Tem- I: 50 °C / 80 °C		_1)	3,0	5,0	5,0	5,0	4,5
	Rk,cr [N/mm ²]	_1)	3,0	4,5	4,5	4,5	4,0
Installation factor							
Dry or wet concrete	Yinst [-]	_1)			1,0		
1) Performance not assessed							

Performances

Characteristic resistance to combined pull-out and concrete failure for fischer internal threaded anchors RG M I and reinforcing bars

Annex C 6

Appendix 22 / 24

Anchor rod	M6	M8	M10	M12	M16	M20	M24	M27	M30
Displacement-Factors	for tensi	on loading	g ¹⁾						
Jncracked concrete;	Temperat	ure range	- I, II						
N0-Factor	0,09	0,09	0,09	0,10	0,10	0,10	0,10	0,11	0,12
$\frac{1}{2}$ [mm/(N/mm ²)]	0,10	0,10	0,10	0,12	0,12	0,12	0,13	0,13	0,14
Cracked concrete; Te	mperature	range I,	II						
N0-Factor	_3)	0,12	0,12	0,12	0,13	0,13	_3)	_3)	_3)
$[mm/(N/mm^2)]$	_3)	0,25	0,27	0,30	0,30	0,30	_3)	_3)	_3)
Displacement-Factors	s for shea	r loading²)						
Jncracked or cracked	d concrete	; Temper	ature ranç	ge I, II					
DV0-Factor	0,11	0,11	0,11	0,10	0,10	0,09	0,09	0,08	0,07
[mm/kN]	0,12	0,12	0,12	0,11	0,11	0,10	0,10	0,09	0,09

1) Calculation of effective displacement:

²⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau$

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V$

 $\delta_{N\infty} = \delta_{N\infty\text{-Factor}} \cdot \tau$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V$

 τ = acting bond strength under tension loading

V = acting shear loading

Table C7.2: Displacements for fischer internal threaded anchors RG M I

Internal anchor l	threaded RG M I	M8	M10	M12	M16	M20
Displace	ement-Factors	for tension load	ing ¹⁾			
Uncrack	ked concrete;	Temperature ranç	ge I, II			
δ _{N0-Factor}	[mm/(N/mm ²)]	0,10	0,11	0,12	0,13	0,14
δ _{N∞} -Factor	[[[[[[[]]	0,13	0,14	0,15	0,16	0,18
Displace	ement-Factors	for shear loading	g ²⁾			
Uncrack	ed concrete;	Temperature ranç	ge I, II			
δ _V 0-Factor	[mm/kN]	0,12	0,12	0,12	0,12	0,12
δ∨∞-Factor	[mm/kN]	0,14	0,14	0,14	0,14	0,14

1) Calculation of effective displacement:

²⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau$

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V$

 $\delta_{N\infty} = \delta_{N\infty\text{-Factor}} \cdot \tau$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V$

 τ = acting bond strength under tension loading

V = acting shear loading

fischer injection system FIS AB

Performances

Displacements for anchor rods and fischer internal threaded anchors RG M I

Annex C 7

Appendix 23 / 24

³⁾ Performance not assessed

Nominal	diameter						
of the ba	Φ.	8	10	12	14	16	20
Displace	ment-Factors	for tension lo	ading ¹⁾				
Uncracke	ed concrete; 1	Γemperature ra	ange I, II				
δN0-Factor	mm/(N/mm²)]	0,09	0,09	0,10	0,10	0,10	0,10
δ _{N∞-Factor} L	mm/(w/mm-)][0,10	0,10	0,12	0,12	0,12	0,12
Cracked	concrete; Ter	nperature rang	ge I, II				
δN0-Factor		_3)	0,12	0,13	0,13	0,13	0,13
δ _{N∞-Factor} L	mm/(N/mm²)]	_3)	0,27	0,30	0,30	0,30	0,30
Displace	ment-Factors	for shear load	ding ²⁾				
Uncracke	ed or cracked	concrete; Ten	nperature ranç	ge I, II			
δv0-Factor	[mama //s N 1]	0,11	0,11	0,10	0,10	0,10	0,09
δ _{V∞-Factor}	[mm/kN]	0,12	0,12	0,11	0,11	0,11	0,10

1) Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau$

 $\delta_{\mathsf{N}\infty} = \delta_{\mathsf{N}\infty\text{-Factor}} \cdot \tau$

 τ = acting bond strength under tension loading

²⁾ Calculation of effective displacement:

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V$

V = acting shear loading

3) Performance not assessed

fischer injection system FIS AB

Performances

Displacements for reinforcing bars

Annex C 8

Appendix 24 / 24