

DECLARATION OF PERFORMANCE

DoP 0333

for fischer Anchor Channel FES with fischer Channel Bolts FBC (Anchor channels for use in concrete) ΕN DoP 0333 1. Unique identification code of the product-type: 2. Intended use/es: Anchor channel for use in cracked or uncracked concrete, see appendix, especially annexes B1- B8. 3. Manufacturer: fischerwerke GmbH & Co. KG. Klaus-Fischer-Str. 1, 72178 Waldachtal, Germany 4. Authorised representative: 5. System/s of AVCP: 1 EAD 330008-03-0601, Edition 06/2021 6. European Assessment Document: ETA-18/0862; 2023-03-31 European Technical Assessment: Technical Assessment Body: DIBt- Deutsches Institut für Bautechnik Notified body/ies: 2873 TU Darmstadt 7. Declared performance/s: Mechanical resistance and stability (BWR 1) Characteristic resistance to tension load (static and quasi-static loading): 1) Resistance to steel failure of anchors: Annex C1 2) Resistance to steel failure of the connection between anchors and channel: Annex C1 3) Resistance to steel failure of channel lips and sunsequently pullout of channel bolt: Annex C1 4) Resistance to steel failure of channel bolt: Annex C10 5) Resistance to steel failure by exceeding the bending strength of the channel: Annexes A5, C2 6) Maximum installation torque moment to avoid damage during installation: Annex B4 7) Resistance to pull-out failure of the anchor: Annexes C3, C4 8) Resistance to concrete cone failure: Annexes B3, C3, C4 9) Minimum edge distance, spacing, member thickness to prevent concrete splitting during installation: Annexes A5, B3 10) Characteristic edge distance and spacing to avoid splitting of concrete under load: Annexes C3, C4 11) Resistance to blowout failure- bearing area of head: Annex A4 Characteristic resistance to shear load (static and guasi-static loading): 12) Resistance to steel failure of channel bolt under shear loading without lever arm: Annex C10 13) Resistance to steel failure by bending of the channel bolt under shear load with lever arm: Annex C11 14) Resistance to steel failure of channel lips, steel failure of connection between anchor and channel or steel failure of anchor (shear load in transverse direction): Annexes C6, C7 15) Resistance to steel failure of connection between channel lips and channel bolt (shear load in longitudinal channel axis): Annex C8 16) Factor for sensistivity to installation: Annex C8 17) Resistance to steel failure of the anchor: Annexes C6, C7 18) Resistance to steel failure of connection between anchor and channel: Annexes C6, C7 19) Resistance to concrete pry-out failure: Annex C8 20) Resistance to concrete edge failure: Annex C8 Characteristic resistance under combined static and quasi-static tension and shear loading 21) Resistance to steel failure of the anchor channel: Annex C9 Characteristic resistance under fatigue tension loading: 22) Fatigue resistance to steel failure of the whole system (continuous or tri-linear function): NPD 23) Fatigue limit resistance to steel failure of the whole system: NPD 24) Fatigue resistance to concrete related failure (exponential function): NPD 25) Fatigue limit resistance to concrete related failure: NPD 26) Displacements: Annexes C5, C9 Safety in case of fire (BWR 2) 27) Reaction to fire: Class (A1) 28) Resistance to fire: Annex C12 Durability: 29) Durability: Annexes A7, B1, B2

8. <u>Appropriate Technical Documentation and/or Specific</u> <u>Technical Documentation:</u>

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

U.S.

Dr.-Ing. Oliver Geibig, Managing Director Business Units & Engineering Tumlingen, 2023-07-25

Jürgen Grün, Managing Director Chemistry & Quality

This DoP has been prepared in different languages. In case there is a dispute on the interpretation the English version shall always prevail.

The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Translation guidance Essential Characteristics and Performance Parameters for Annexes

Med	chanical resistance and stability (BWR 1)	
Cha	racteristic resistance to tension load (static and quasi-static loading):	
1	Resistance to steel failure of anchors:	N _{Rk,s,a}
2	Resistance to steel failure of the connection between anchors and channel:	N _{Rk,s,c}
3	Resistance to steel failure of channel lips and sunsequently pullout of channel bolt:	N ⁰ _{Rk,s,l} ; s _{l,N}
4	Resistance to steel failure of channel bolt:	N _{Rk,s}
5	Resistance to steel failure by exceeding the bending strength of the channel:	M _{Rk,s,flex} ; s _{max}
6	Maximum installation torque moment to avoid damage during installation:	T _{inst,g} ; (T _{inst,s})
7	Resistance to pull-out failure of the anchor:	N _{Rk,p}
8	Resistance to concrete cone failure:	k _{cr,N} ; k _{ucr,N} ; h _{ef}
9	Minimum edge distance, spacing, member thickness to prevent concrete splitting during installation:	s _{min;} c _{min;} h _{min}
10	Characteristic edge distance and spacing to avoid splitting of concrete under load:	S _{cr.sp} ; C _{cr.sp}
11	Resistance to blowout failure- bearing area of head:	A _h
Cha	racteristic resistance to shear load (static and quasi-static loading):	
12	Resistance to steel failure of channel bolt under shear loading without lever arm:	V _{Rks}
13	Resistance to steel failure by bending of the channel bolt under shear load with lever arm:	M ⁰
		IVI Rk,s
14	Resistance to steel failure of channel lips, steel failure of connection between anchor and channel or steel failure of anchor (shear load in transverse direction):	V ⁰ _{Rk,s,l,y} ; s _{l,V} ; V _{Rk,s,c,y} ; V _{Rk,s,a,v}
15	Resistance to steal failure of connection between channel lins and channel holt (shear load in longitudinal channel avis):	V
15		♥ Rk,s,l,x
16	Factor for sensistivity to installation:	Yinst
17	Resistance to steel failure of the anchor:	V _{Rk,s,a,x}
18	Resistance to steel failure of connection between anchor and channel:	V _{Rk,s,c,x}
19	Resistance to concrete pry-out failure:	k ₈
20	Resistance to concrete edge failure:	k _{cr,V} ; k _{ucr,V}
Cha	racteristic resistance under combined static and quasi-static tension and shear loading	
21	Resistance to steel failure of the anchor channel:	k ₁₃ , k ₁₄
Cha	racteristic resistance under fatigue tension loading:	
22	Fatigue resistance to steel failure of the whole system (continuous or tri-linear function):	$\Delta N_{Rk,s,0,n}$
23	Fatigue limit resistance to steel failure of the whole system:	(n=1 to n=∞) ΔN _{Rk,s,0,∞}
24	Fatigue resistance to concrete related failure (exponential function):	ΔN _{Rk,c,0,n ;} ΔN _{Rk,p,0,n}
25	Fatigue limit resistance to concrete related failure:	(n=1 to n=∞) ΔN _{Rk,c,0,∞} ; ΔN _{Rk.p.0,∞}
26	Displacements:	δ _{N0} ; δ _{N∞} ; δ _{V.v.0} ; δ _{V.v∞}
Safe	ety in case of fire (BWR 2)	δ _{V,x,0} ; δ _{V,x,∞}
27	Reaction to fire:	Class
28	Resistance to fire:	N _{Rksfi} ; V _{Rksfi}
Dur	ability:	
29	Durability:	Descritpion

Specific Part

1 Technical description of the product

The fischer Anchor Channel FES with fischer Channel Bolts FBC is a system consisting of a C-shaped channel profile of steel and at least two metal anchors non-detachably fixed on the channel back and fischer Channel Bolts.

The anchor channel is embedded surface-flush in the concrete. fischer Channel Bolts with appropriate hexagonal nuts and washers are fixed to the channel.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor channel is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor channel of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under tension load (static and quasi-static loading)	
- Resistance to steel failure of anchors	$N_{Rk,s,a}$ see Annex C1
 Resistance to steel failure of the connection between anchors and channel 	$N_{Rk,s,c}$ see Annex C1
 Resistance to steel failure of channel lips and subsequently pull-out of channel bolt 	$N^0_{Rk,s,l}$; $s_{l,N}$ see Annex C1
- Resistance to steel failure of channel bolt	$N_{Rk,s}$ see Annex C10
 Resistance to steel failure by exceeding the bending strength of the channel 	s_{max} see Annex A5 $M_{Rk,s,flex}$ see Annex C2
 Maximum installation torque to avoid damage during installation 	$T_{inst,g}$; $T_{inst,s}$ see Annex B4
- Resistance to pull-out failure of the anchor	$N_{Rk,p}$ see Annex C3
- Resistance to concrete cone failure	h_{ef} see Annex B3 $k_{cr,N}$; $k_{ucr,N}$ see Annex C4
 Minimum edge distances, spacing and member thickness to avoid concrete splitting during installation 	s_{min} see Annex A5 c_{min} ; h_{min} see Annex B3
 Characteristic edge distance and spacing to avoid splitting of concrete under load 	$s_{cr,sp}$; $c_{cr,sp}$ see Annex C4
 Resistance to blowout failure - bearing area of anchor head 	A_h see Annex A4

Essential characteristic	Performance
Characteristic resistance under shear load (static and quasi-static loading)	
 Resistance to steel failure of channel bolt under shear loading without lever arm 	$V_{Rk,s}$ see Annex C10
 Resistance to steel failure by bending of the channel bolt under shear load with lever arm 	$M^0_{Rk,s}$ see Annex C11
 Resistance to steel failure of channel lips, steel failure of connection between anchor and channel and steel failure of anchor (shear load in transverse direction) 	$V^0_{Rk,s,l,y}$; $s_{l,V}$; $V_{Rk,s,c,y}$; $V_{Rk,s,a,y}$ see Annex C6
 Resistance to steel failure of connection between channel lips and channel bolt (shear load in longitudinal channel axis) 	$V_{Rk,s,l,x}$ see Annex C8
 Factor for sensitivity to installation (longitudinal shear) 	γ_{inst} see Annex C8
 Resistance to steel failure of the anchor (longitudinal shear) 	$V_{Rk,s,a,x}$ see Annex C6
 Resistance to steel failure of connection between anchor and channel (longitudinal shear) 	$V_{Rk,s,c,x}$ see Annex C6
- Resistance to concrete pry-out failure	k_8 see Annex C8
- Resistance to concrete edge failure	$k_{cr,V}$; $k_{ucr,V}$ see Annex C8
Characteristic resistance under combined tension and shear load (static and quasi-static load)	
- Resistance to steel failure of the anchor channel	k_{13} ; k_{14} see Annex C9
Characteristic resistance under fatigue tension loading	
 Fatigue resistance to steel failure of the whole system (continuous or tri-linear function, test method A1, A2) 	No Performance assessed
 Fatigue limit resistance to steel failure of the whole system (test method B) 	No Performance assessed
 Fatigue resistance to concrete related failure (exponential function, test method A1, A2) 	No Performance assessed
 Fatigue limit resistance to concrete related failure (test method B) 	No Performance assessed
Displacements (static and quasi-static load)	δ _{N0} ; δ _{N∞} see Annex C5
	$\delta_{V,y,0}$; $\delta_{V,y,\infty}$; $\delta_{V,x,0}$; $\delta_{V,x,\infty}$ see Annex C9

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance			
Reaction to fire	Class A1			
Characteristic resistance to fire	$N_{Rk,s,fi}$; $V_{Rk,s,fi}$ see Annex C12			

3.3 Aspects of durability linked with the Basic Works Requirements

Essential characteristic	Performance
Durability	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330008-03-0601, the applicable European legal act is: [2000/273/EC].

The system to be applied is: 1

Product Description Marking and materials Annex A2

Appendix 5 / 31

FES-H-(I-)-40/22(-P), -50/30(-P), -52/34

FES-H-S-29/20, -38/23 (serrated)

FES-C-40/25, -49/30, -54/33

FES-C-28/15, -38/17

Table 1: Dimensions of hot-rolled and cold-formed channel profile

Anchor	b _{ch}	h _{ch}	t _{ch}	d _{ch}	f	f ₁	l _y
Channel FES-	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm ⁴]
C-28/15	28,0	15,5	2,3	12,0	2,3	_1)	4.280
C-38/17	38,0	17,3	3,0	18,0	3,0	_1)	8.240
C-40/25	40,0	25,0	2,8	18,0	6,0	_1)	20.340
C-49/30	50,0	30,0	3,3	22,0	7,0	_1)	43.080
C-54/33	54,0	33,0	5,0	22,0	8,5	_1)	74.090
H-S-29/20	30,0	20,0	3,0	14,0	5,2	_1)	11.150
H-S-38/23	38,0	23,0	3,3	18,0	6,0	_1)	21.070
H-(I-)40/22(-P)	40,0	23,5	2,6	18,0	6,2	3,6	21.660
H-(I-)50/30(-P)	50,0	30,0	3,0	22,5	8,1	5,5	54.960
H-(I-)52/34	52,5	34,0	4,0	22,5	11,5	8,3	96.330

¹⁾ This dimension is not available for this product.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Product Description

Dimensions of channels

Annex A3

Appendix 6 / 31

Table 2: Dimensions of anchor (welded I-anchor or forged round anchor)

Anchor		I-anchor					Roi	und anc	hor		
Channel FES -	l _{a,min} [mm]	t _{w,min} [mm]	b _{h,min} [mm]	t _h [mm]	W _A [mm]	A _{h,min} [mm ²]	l _{a,min} [mm]	da [mm]	dh [mm]	t _h [mm]	A _h [mm²]
C-28/15			-	2)			31,0	6	12,0	1,3	85
C-38/17			-	2)			60,8	8	16,0	2,0	151
C-40/25		_ 2)					56,0	8	16,0	2,0	151
C-49/30		_ 2)					66,0	10	20,0	2,2	236
C-54/33			-	2)			124,5	11	24,3	2,5	369
H-S-29/20			-	2)			59,5	10	20,0	2,5	236
H-S-38/23			-	2)			76,2	10	20,0	2,2	236
H-(I-)40/22	62	5	20	5	20	300	68,5	8	16,0	2,0	151
H-40/22-P		_ 2)					69,7	10	20,0	2,2	236
H-(I-)50/30	69	5	20	5	25	375	66,2	10	20,0	2,2	236
H-50/30-P		_ 2)					78,5	11	24,3	2,5	369
H-(I-)52/34	126	5 ¹⁾	20 ¹⁾	5	40	600	123,5	11	24,3	2,5	369

¹⁾ Alternative I-anchor: tw = 6 mm, bh = 25 mm. ²⁾ Product not available.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Product Description Dimensions of anchors Annex A4

Appendix 7 / 31

Table 3: Dimensions of Anchor Channels FES								
Anchor channel FES-	Anchor type	S _{min} [mm]	S _{max} [mm]	X _{min} [mm				
C-28/15			000					

Imin

[mm]

Imax

[mm]

Xmax

[mm]

H(-I)-50/30 50/30 8.8, A4-70 12 17,1 50/30 8.8. A4-70 16 17.1 C-54/33 20 H(-I)-52/34 50/30 8.8, A4-70 20,5 H(-I)-50/30(-P) 16 17,5 N-50/30 8.8 20 21.0 H(-I)-52/34 ¹⁾ This dimension is not available for this product.

S-29/20 8.8

S-38/23 8.8

40/22 8.8

40/22 8.8, A4-70

40/22 8.8, A4-70

N-40/22 8.8

50/30 8.8

12

12

16

10

12

16

16

10

13,0

16,7

14.0

14.0

17,0

17,0

17,1

22.0

29,1

32.5

33.0

40,5

42,2

40.5

6,5

5,8

8.0

7,8

9,0

10,0

11.0

12,0

12,0

12.0

fischer Anchor Channel FES with fischer Channel Bolts FBC

Product Description

H-S-29/20

H-S-38/23

C-38/17

H(-I)-40/22(-P)

C-40/25

H(-I)-40/22(-P)

C-49/30

Channel bolts

Annex A6

8,0

7,3

11.0

10.3

11,5

12.5

13.5

14.5

15,5

15.5

Appendix 9 / 31

Table	6:	Materials	and	properties
1 4010	•••	matorialo		pi 0p0i ii00

	Carb	Stainless steel		
Component	Mechanical properties	Coating	Coating	Mechanical properties
1	2a	2a	2b	3
Channel profile	1.0038, 1.0044 acc. to EN 10025:2004 1.0976, 1.0979 acc. to EN 10149:2013	Hot dip ga ≥ 50 µm EN ISO 1	alvanized acc. to 461:2022	_ 2)
Anchor	1.0038, 1.0213, 1.0214 acc. to EN 10025:2004 1.5525, 1.5535 acc. to EN 10263:2017 1.5523	Hot dip ga ≥ 50 µm EN ISO 1	alvanized acc. to 461:2022	_ 2)
Channel bolt	Steel grade 8.8 acc. to EN ISO 898-1:2013	Electroplated acc. to EN ISO 4042:2018	Hot dip galvanized ≥ 50 µm acc. to EN ISO 10684:2004 + AC:2009	Steel grade 70 according to EN ISO 3506-1: 2020
Plain washer ¹⁾ acc. to EN ISO 7089:2000 and EN ISO 7093- 1:2000	Hardness class A ≥ 200 HV	Electroplated acc. to EN ISO 4042:2018	Hot dip galvanized ≥ 50 µm acc. to EN ISO 10684:2004 + AC:2009	1.4401, 1.4404, 1.4571; 1.4578 according to EN 10088: 2009
Hexagonal nut acc. to EN ISO 4032:2012	Property class 5 or 8 acc. to EN ISO 898-2:2012	Electroplated acc. to EN ISO 4042:2018	Hot dip galvanized ≥ 50 µm acc. to EN ISO 10684:2004 + AC:2009	Property class 70 or 80 according to EN ISO 3506-2: 2020

¹⁾ Not in the scope of delivery.
²⁾ Product not available.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Product Description Materials

Annex A7

Appendix 10 / 31

Specification of intended use

Anchor channels and channel bolts subject to:

- Static and quasi-static tension and shear perpendicular to the longitudinal axis of the channel for FES in combination with channel bolt FBC.
- Static and quasi-static tension, shear perpendicular to the longitudinal axis of the channel and shear in the direction of the longitudinal axis of the channel for FES-H(-I)-40/22(-P), FES-H(-I)-50/30(-P) or FES-H(-I)-52/34 in combination with notching channel bolt FBC-N.
- Static and quasi-static tension, shear perpendicular to the longitudinal axis of the channel and shear in the direction of the longitudinal axis of the channel for serrated anchor channels FES-H-S in combination with serrated channel bolts FBC-S.
- Fire exposure: Only for concrete class C20/25 to C50/60.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C12/15 to C90/105 according to EN 206-1:2000
- Cracked or uncracked concrete.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (anchor channels and channel bolts according to Annex A7, Table 6, column 2a and 2b, 3).
- Structures subject to internal conditions with usual humidity (e.g. kitchens, bathrooms and laundries in residential buildings, exceptional permanent damp conditions and application under water) (anchor channels and channel bolts according to Annex A7, Table 6, column 2b, 3).

Design:

- Anchor channels are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor channel and channel bolts are indicated on the design drawings (e.g. position of the anchor channel relative to the reinforcement or to supports).
- For static and quasi-static loading as well as fire exposure the anchor channels have to be designed in accordance with EOTA TR 047 "Design of Anchor Channels", March 2018 or EN 1992-4:2018.
- The characteristic resistances are calculated with the minimum effective embedment depth.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Intended Use Specifications Annex B1

Appendix 11 / 31

Installation:

- The installation of anchor channels is carried out by appropriately qualified personnel under the supervision of the person responsible for the technical matters on site.
- Use of the anchor channels only as supplied by the manufacturer without any manipulations, repositioning or exchanging of channel components.
- Cutting of anchor channels is allowed only if pieces according to Annex A5, Table 3 are generated including end spacing x and minimum channel length I_{min} and only to be used in dry internal conditions.
- Installation in accordance with the installation instruction given in Annexes B5, B6, B7 or B8.
- The anchor channels are fixed on the formwork, reinforcement or auxiliary construction such that no movement of the channels will occur during the time of laying the reinforcement and of placing and compacting the concrete.
- The concrete around the head of the anchors is properly compacted. The channels are protected from penetration of concrete into the internal space of the channels.
- Washers may be chosen according to Annex A7 and provided separately by the user.
- Orientating the channel bolt (groove according to Annex B6, B7 and B8) rectangular to the channel axis.
- The required installation torque given in Annex B4 must be applied and must not be exceeded.
- Notching channel bolts FBC-N may be used only once after applying the installation torque Tinst,s.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Intended Use Specifications Annex B2

Appendix 12 / 31

Table 7: Installation parameters

Anchor Channel FES-			C-28/15	C-38/17	H-S-29/20	H-S-38/23	C-40/25 H-40/22 H-40/22-P H-I-40/22	C-49/30 H-50/30 H-50/30-P H-I-50/30	C-54/33 H-52/34 H-I-52/34
Minimum effective embedment depth	h _{ef,min}		45	76	77	97	79 90 91 79	94 94 106 94	155 155 155
Minimum edge distance	Cmin	[mm]	40	50	75	100	50 50 50 50	75 75 75 75 75	100 100 100
Minimum thickness of concrete member	h _{min} 1)		70	100	100	100	100 100 100 100	100 100 108 100	160 160 170

¹⁾ $h_{min} = h_{ef} + t_h + c_{nom}$; c_{nom} nach EN 1992-1-1:2004 + AC:2010.

Table 8: Minimum spacing for channel bolts

Channel bolt			M8	M10	M12	M16	M20
Minimum spacing between channel bolts	Scbo,min	[mm]	40	50	60	80	100

fischer Anchor Channel FES with fischer Channel Bolts FBC

Annex B3

Table 9: Required installation torque T _{inst}											
				T _{inst} ¹⁾	[Nm]						
fischer Anchor channel	fischer	Thread	Gen	eral	Steel - steel contac						
FES-	FBC	diameter	T _{in}	st,g	Tins	st,s					
			8.8	A4-70	8.8	A4-70					
		M8	7	_2)	15	_2)					
C-28/15	28/15	M10	10	_2)	30	_2)					
		M12	13	_2)	45	_2)					
C-38/17	38/17	M10	15	_2)	30	_2)					
0.00/11	00/17	M12	20	_2)	45	_2)					
H-S-29/20	S-29/20	M12	80	_2)	80	_2)					
		M12	80	_2)	80	_2)					
П-3-30/23	6 20/22	M16	100	_2)	100	_2)					
C 29/17	3-30/23	M12	40	_2)	80	_2)					
0-36/17		M16	50	_2)	100	_2)					
		M10	15	_2)	30	_2)					
H(-I)-40/22(-P)	40/22	M12	24	24	45	45					
C-40/25		M16	32	32	100	100					
	N-40/22	M16	_2)	_2)	200	_2)					
C-49/30		M10	15	_2)	30	_2)					
H(-I)-50/30(-P)	50/20	M12	25	25	45	45					
C-54/33	00/30	M16	60	60	100	100					
H(-I)-52/34		M20	75	75	230	230					
H(-I)-50/30(-P),	N-50/30	M16	_2)	_2)	200	_2)					
H(-I)-52/34	11-30/30	M20	_2)	_2)	400	_2)					

¹⁾ T_{inst} must not be exceeded.
 ²⁾ Product not available.

Anchor Channel FES

fischer Anchor Channel FES with fischer Channel Bolts FBC

Intended Use

Installation instruction for fischer Anchor Channels FES

Annex B5

Appendix 15 / 31

Channel Bolts FBC

Serrated Channel Bolts FBC-S

Appendix 17 / 31

Notching Channel Bolts FBC-N

Intended Use

Installation instruction for Notching fischer Channel Bolts FBC-N

Annex B8

Appendix 18 / 31

Table 10: Characteristic resistances under tension load – steel failure of hot-rolled anchor channels

Anchor Channel FES-H-			S-29/20	S-38/23	40/22 40/22-P I-40/22	50/30 50/30-P I-50/30	52/34 I-52/34
Steel failure: Anchor							
Characteristic resistance	N _{Rk,s,a}	[kN]	31,0	31,0	20,0 42,0 35,0	31,0 44,0 44,0	55,0 70,4
Partial factor	γ _{Ms} ¹⁾	[-]] 1,8				
Steel failure: Connection between anchor and	l chanı	nel					
Characteristic resistance	N _{Rk,s,c}	[kN]	20,2	30,3	20,0 40,1 38,0	31,0 44,0 40,0	55,0 70,4
Partial factor	γ _{Ms} ¹⁾	[-]			1,8		
Steel failure: Local flexure of channel lips							
Characteristic spacing of channel bolts for $N_{Rk,s,l}$	SI,N	[mm]	60	76	80 80 80	100 100 100	105 105
Characteristic resistance	N ⁰ Rk,s,I	[kN]	20,2	30,3	38,0 42,0 38,0	43,0 52,0 43,0	72,0 72,0
Partial factor	γ _{Ms} ¹⁾	[-]			1,8		

¹⁾ In absence of other national regulations.

Table 11: Characteristic resistances under tension load – steel failure of cold-formed anchor channels

Anchor Channel FES-C-	28/15	38/17	40/25	49/30	54/33		
Steel failure: Anchor							
Characteristic resistance	N _{Rk,s,a}	[kN]	9,0	20,0	20,0	31,0	55,0
Partial factor	γ_{Ms} $^{1)}$	[-]			1,8		
Steel failure: Connection between anchor and							
Characteristic resistance	N _{Rk,s,c}	[kN]	9,0	18,0	20,0	31,0	55,0
Partial factor	γ _{Ms} ¹⁾	[-]			1,8		
Steel failure: Local flexure of channel lips							
Characteristic spacing of channel bolts for $N_{Rk,s,l}$	SI,N	[mm]	56	76	80	100	108
Characteristic resistance	N ⁰ Rk,s,I	[kN]	9,0	18,0	20,0	31,0	55,0
Partial factor	[-]			1,8			

¹⁾ In absence of other national regulations.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Performance

Characteristic resistances under tension load – Steel failure of anchor channel

Annex C1

Appendix 19 / 31

Table 12: Characteristic flexural resistance of hot rolled channels under tension load

Anchor Channel FES-H-				S-38/23	40/22 40/22-P I-40/22	50/30 50/30-P I-50/30	52/34 I-52/34
Steel failure: Flexure of channel							
Characteristic flexural resistance of channel	MRk,s,flex	[Nm]	745	1.241	1.118 1.118 1.118	2.185 2.185 2.185	3.163 3.670
Partial factor	γMs,flex ¹⁾	[-]			1,15		

¹⁾ In absence of other national regulations.

Table 13: Characteristic flexural resistance of cold-formed channels under tension load

Anchor Channel FES-C-	28/15	38/17	40/25	49/30	54/33			
Steel failure: Flexure of channel								
Characteristic flexural resistance of channel	MRk,s,flex	[Nm]	310	567	915	1.554	2.350	
Partial factor	γMs,flex ¹⁾	[-]			1,15			

¹⁾ In absence of other national regulations.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Performance Characteristic resistances under tension load – Steel failure of anchor channel Annex C2

Appendix 20 / 31

Table 14: Characteristic resistances under tension load – concrete failure of hot rolled anchor channels

Anchor Channel FES-H-	Anchor Channel FES-H-				40/22 40/22-P I-40/22	50/30 50/30-P I-50/30	52/34 I-52/34
Concrete failure: Pull-out failure							
Characteristic resistance in cracked concrete C12/15	No		21,2	21,2	13,6 21,2 27,0	21,2 33,2 33,8	33,2 54,0
Characteristic resistance in uncracked concrete C12/15	ΙΝΗΚ,ρ	ואו	29,7	29,7	19,0 29,7 37,8	29,7 46,5 47,3	46,5 75,6
Increasing factor of $N_{Rk,p} = N_{Rk,p}(C12/15)^* \psi_c$	C16/20 C20/25 C25/30 C30/37 C35/45 C40/50 C45/55 C50/60 C55/67 ≥C60/75	ψc[-]					
Partial factor	$\gamma_{Mp} = \gamma_{Mc}^{1)}$	[-]			1,5		
Concrete failure: Concrete cone failure					·		
Product factor k	k _{cr,N}	[-]	7,8	8,1	8,0 8,0 7,9	8,1 8,2 8,1	8,7 8,7
	k _{ucr,N}	[-]	11,2	11,6	11,4 11,5 11,2	11,5 11,7 11,5	12,4 12,4
Partial factor	γMc ¹⁾	[-]			1,5		
Concrete failure: Splitting							
Characteristic edge distance	Ccr,sp	[mm]	231	291	270 273 237	282 318 282	465 465
Characteristic spacing	S _{cr,sp}	[mm]	462	582	540 546 474	564 636 564	930 930
Partial factor	γMsp =γMc ¹	[-]		-	1,5		

¹⁾ In absence of other national regulations.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Performance

Characteristic resistances under tension load – concrete failure of hot rolled anchor channels

Annex C3

Appendix 21 / 31

Table 15: Characteristic resistances under tension load – concrete failure of cold-formed anchor channels

Anchor Channel FES-C-		28/15	38/17	40/25	49/30	54/33		
Concrete failure: Pull-out failure								
Characteristic resistance in cracked concrete C12/15			7,6	13,6	13,6	21,2	33,2	
Characteristic resistance in uncracked concrete C12/15	тяк,р	נגואן	10,7	19,0	19,0	29,7	46,5	
Increasing factor of $N_{Rk,p} = N_{Rk,p}(C12/15)^* \psi_c$	C16/20 C20/25 C25/30 C30/37 C35/45 C40/50 C45/55 C50/60 C55/67 ≥C60/75	ψc [-]	1,33 1,67 2,08 2,50 2,92 3,33 3,75 4,17 4,58					
Partial factor	γмр=γмс ¹⁾	[-]			1,5			
Concrete failure: Concrete cone failure								
Product factor k	k _{cr,N}	[-]	7,2	7,8	7,9	8,1	8,7	
	k _{ucr,N}	[-]	10,3	11,2	11,2	11,5	12,4	
Partial factor	γMc ¹⁾	[-]			1,5			
Concrete failure: Splitting failure								
Characteristic edge distance	Ccr,sp	[mm]	135	228	237	282	465	
Characteristic spacing	S _{cr,sp}	[mm]	270	456	474	564	930	
Partial factor	$\gamma Msp = \gamma Mc^{1}$	[-]			1,5			

¹⁾ In absence of other national regulations.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Performance

Characteristic resistances under tension load – concrete failure of cold formed anchor channels

Annex C4

Appendix 22 / 31

Table 16: Displacements of hot-rolled anchor channels under tension load

Anchor Channel FES-H-				S-38/23	40/22 40/22-P I-40/22	50/30 50/30-P I-50/30	52/34 I-52/34
Tension load	N	[kN]	8,0	12,0	15,1 16,7 15,1	17,1 20,6 17,1	28,6 28,6
Short-term displacement 1)	δ _{N0}	[mm]	1,4	2,0	2,2 2,5 2,2	1,5 1,8 1,5	1,9 1,9
Long-term displacement 1)	δ _{N∞}	[mm]	2,8	4,0	4,5 5,0 4,5	2,9 3,5 2,9	3,7 3,7

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips, bending of the channel and slip of the anchor channel in concrete.

Table 17: Displacements of cold-formed anchor channels under tension load

Anchor Channel FES-C-			28/15	38/17	40/25	49/30	54/33
Zuglast	N	[kN]	3,6	7,1	7,9	12,3	21,8
Kurzzeitverschiebung ¹⁾	δ _{N0}	[mm]	0,7	1,3	1,5	1,4	1,2
Langzeitverschiebung ¹⁾	δ _{N∞}	[mm]	1,4	2,6	3,0	2,8	2,4

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips, bending of the channel and slip of the anchor channel in concret.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Table 18: Characteristic resistances under shear load – steel failure of hot-rolled anchor channels

Anchor Channel FES-H-	S-29/20	S-38/23	40/22 40/22-P I-40/22	50/30 50/30-P I-50/30	52/34 I-52/34		
Steel failure: Anchor							
Characteristic registeres	V _{Rk,s,a,y}	[kN]	20,2	30,3	40,0 50,8 40,0	60,0 87,9 60,0	100 100
Characteristic resistance	V _{Rk,s,a,x}	[kN]	18,8	18,8	12,0 25,4 22,8	18,6 26,8 24,0	33,0 42,2
Partial factor	γMs ¹⁾	[-]			1,8		
Steel failure: Connection between anchor and cha	annel						
Characteristic resistance	V _{Rk,s,c,y}	[kN]	20,2	30,3	40,0 50,8 40,0	60,0 87,9 60,0	100 100
Characteristic resistance	V _{Rk,s,c,x}	[kN]	12,1	18,2	12,0 25,2 22,8	18,6 26,4 24,0	33,0 42,2
Partial factor	γMs ¹⁾	[-]			1,8		
Steel failure: Local flexure of channel lips							
Characteristic spacing of channel bolts for V _{Rk,s,I}	Sı,V	[mm]	60	76	80 80 80	100 100 100	108 108
Characteristic resistance	V ⁰ Rk,s,l,y	[kN]	20,2	30,3	40,0 50,8 40,0	60,0 87,9 60,0	100 100
Partial factor	γMs ¹⁾	[-]			1,8		

¹⁾ In absence of other national regulations.

²⁾ No performance assessed.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Performance

Characteristic resistance under shear load - Steel failure of hot-rolled anchor channels

Annex C6

Appendix 24 / 31

Table 19: Characteristic resistances under shear load – steel failure of cold-formed anchor channels

Anchor Channel FES-C-	28/15	38/17	40/25	49/30	54/33		
Steel failure: Anchor							
Characteristic registeres	V _{Rk,s,a,y}	[kN]	9	18	20	31	55
Characteristic resistance		[kN]	_2)	_2)	_2)	_2)	_2)
Partial factor	[-]			1,8	•		
Steel failure: Connection between anchor and channel							
Characteristic resistance	V _{Rk,s,c,y}	[kN]	9	18	20	31	55
	V _{Rk,s,c,x}	[kN]	_2)	_2)	_2)	_2)	_2)
Partial factor	γ _{Ms} ¹⁾	[-]			1,8	•	•
Steel failure: Local flexure of channel lips							
Characteristic spacing of channel bolts for $V_{Rk,s,I}$	Si,V	[mm]	56	76	80	100	108
Characteristic resistance	V ⁰ Rk,s,l,y	[kN]	9	18	20	31	55
Partial factor	γMs ¹⁾	[-]			1,8		

¹⁾ In absence of other national regulations.

²⁾ No performance assessed.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Performance

Characteristic resistance under shear load - Steel failure of cold-formed anchor channels

Annex C7

Appendix 25 / 31

Table 20: Characteristic resistance for shear load in direction of the longitudinal axis of the channel – steel failure

Anchor Channel FES-H-		S-29/20	S-38/23	40/22 40/22-P I-40/22	50/30 50/30-P I-50/30	52/34 I-52/34		
Steel failure: Con	veen channel lips and c	hannel bo	olt					
			FBC-S-29/20-M12-8.8	22,5	_2)	_2)	_2)	_2)
			FBC-S-38/23-M12-8.8	_2)	23,2	_2)	_2)	_2)
Characteristic	V	TL-NIT	FBC-S-38/23-M16-8.8	_2)	30,3	_2)	_2)	_2)
resistance	V Rk,s,l,x		FBC-N-40/22-M16-8.8	_2)	_2)	14,0	_2)	_2)
			FBC-N-50/30-M16-8.8	_2)	_2)	_2)	10,7	10,7
			FBC-N-50/30-M20-8.8	_2)	_2)	_2)	21,0	21,0
Installation factor	γinst ¹⁾	[-]		1,2	1,0	1,2	M16: 1,2 M20: 1,4	M16: 1,2 M20: 1,4

¹⁾ In absence of other national regulations.

²⁾ No performance assessed.

Table 21: Characteristic resistances of the hot-rolled anchor channel under shear load – concrete failure

Anchor Channel FES-H-			S-29/20	S-38/23	40/22 40/22-P I-40/22	50/30 50/30-P I-50/30	52/34 I-52/34		
Concrete failure: Pry-out failure									
Product factor	k ₈	[-]	2,0	2,0	2,0	2,0	2,0		
Partial factor	γ _{Mc} ¹⁾	[-]	1,5						
Concrete failure: Concrete ed	dge fail	ure							
Draduat factor k	k _{cr,V}	[-]	5,6	5,6	7,5	7,5	7,5		
	k _{ucr,V}	[-]	7,8	7,8	10,5	10,5	10,5		
Partial facto	γMc ¹⁾	[-]	1,5						

¹⁾ In absence of other national regulations.

Table 22: Characteristic resistances of the cold-formed anchor channel under shear load – concrete failure

Anchor Channel FES-C			28/15	38/17	40/25	49/30	54/33		
Concrete failure: Pry-out fail	ure								
Product factor	k ₈	[-]	1	2	2	2	2		
Partial factor	γMc ¹⁾	[-]			1,5				
Concrete failure: Concrete e	dge fail	ure							
Draduat factor ku	k _{cr,∨}	[-]	5,8	6,9	7,5	7,5	7,5		
	k _{ucr,V}	[-]	8,1	9,7	10,5	10,5	10,5		
Partial factor	γMc ¹⁾	[-]	1,5						

¹⁾ In absence of other national regulations.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Performance

Characteristic resistance under shear load

Annex C8

Appendix 26 / 31

Table 23: Displacements under shear load

Anchor Channel FES-			C-28/15	C-38/17	H-S-29/20	H-S-38/23	C-40/25 H-40/22 H-40/22-P H-I-40/22	C-49/30 H-50/30 H-50/30-P H-I-50/30	C-54/33 H-52/34 H-I-52/34
Shear load perpendicular to the longitudinal axis of the channel	Vy	[kN]	3,6	7,1	8,0	12,0	7,9 15,9 20,2 15,9	12,3 23,8 34,9 23,8	21,8 39,7 39,7
Short-term displacement ¹⁾	δν,y,0	[mm]	0,7	1,3	1,4	2,0	1,5 2,1 2,2 2,1	1,4 3,7 2,1 3,7	1,2 4,0 4,0
Long-term displacement 1)	δ _{V,y,} ∞	[mm]	1,1	2,0	2,1	3,0	2,3 3,2 3,3 3,2	2,1 5,5 3,2 5,5	1,8 5,9 5,9
Shear load in direction of the longitudinal axis of the channel	Vx	[kN]	_3)	_3)	6,6	12,0	- ³⁾ 4,6 4,6 4,6	_3) 4) 4) 4)	_3) 4) 4)
Short-term displacement ²⁾	δν,x,0	[mm]	_3)	_3)	0,6	0,8	_ ³⁾ 0,9 0,9 0,9	_3) 5) 5) 5)	_3) 5) 5)
Long-term displacement ²⁾	δ _{V,x,} ∞	[mm]	_3)	_3)	0,9	1,3	- ³⁾ 1,4 1,4 1,4	_3) 6) 6) 6)	_3) 6) 6)

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips and slip of the anchor channel in concrete.

²⁾ Displacements of the anchor channel, including slip of channel bolt, deformation of channel lips and slip of the anchor channel in concrete.

³⁾ No performance assessed.

 $^{\rm 4)}$ For FBC-N-5030-M16 V_x = 3,5 kN, for FBC-N-5030-M20 V_x = 6,7 kN.

 $^{5)}$ For FBC-N-5030-M16 $\delta_{V,x,0}$ = 0,4 mm, for FBC-N-5030-M20 $\delta_{V,x,0}$ = 0,1 mm.

 $^{6)}$ For FBC-N-5030-M16 $\delta_{V,x,\infty}$ = 0,6 mm, for FBC-N-5030-M20 $\delta_{V,x,\infty}$ = 0,2 mm.

Table 24: Characteristic resistances under combined tension and shear load

Anchor Channel FES-			C-28/15	C-38/17	H-S-29/20	H-S-38/23	C-40/25 H-40/22 H-40/22-P H-I-40/22	C-49/30 H-50/30 H-50/30-P H-I-50/30	C-54/33 H-52/34 H-I-52/34		
Steel failure: Local flexure of o	channe	l lips	and fle	exure of	channel						
Product factor	according to EN 1992-4:2018, 7.4.3.1										
Steel failure: Anchor and connection between anchor and channel											
Product factor	k 14	[-]	-] according to EN 1992-4:2018, 7.4.3.1								

fischer Anchor Channel FES with fischer Channel Bolts FBC

Performance

Displacement under shear load, characteristic resistance under combined tension and shear load

Annex C9

Appendix 27 / 31

Table 25: Characteristic resistances under tension and shear load - steel failure of channel bolts

Channel bolt thread diameter	M8	M10	M12	M16	M20			
Steel failure: Channel bolt								
	FBC-28/15			29,2	33,0	45,1	_2)	_2)
	FBC-38/17			_2)	46,4	67,4	_2)	_2)
	FBC-S-29/20			_2)	_2)	48,5	_2)	_2)
Characteristic registeres	FBC-S-38/23		[LAN]	_2)	_2)	67,4	71,5	_2)
Characteristic resistance	FBC-40/22	INRk,s		_2)	46,4	55,1	82,2	_2)
	FBC-N-40/22			_2)	_2)	_2)	100,9	_2)
	FBC-50/30			_2)	46,4	67,4	96,5	127,2
	FBC-N-50/30			_2)	_2)	_2)	113,5	134,0
Partial factor		γMs ¹⁾	[-]			1,5		
Steel failure: Channel bolt						A4-7	0	
Characteristic registeres	FBC-40/22-A4-70	NI-		_2)	_2)	54,9	102,8	_2)
Characteristic resistance	FBC-50/30-A4-70	INRk,s		_2)	_2)	59,0	82,8	163,1
Partial factor		γMs ¹⁾	[-]			1,87	,	
Characteristic shear resistance 8.8	V	[LAN]	14,6	23,2	33,7	62,8	98,0	
Characteristic shear resistance A4-	VRk,s,	[[KIN]	_2)	_2)	35,4	65,9	102,9	
Partial factor (shear loads 8.8)			[-]	1,25				
Partial factor (shear loads A4-70)	γMs ¹⁾	[-]	1,56					

¹⁾ In absence of other national regulations.

²⁾ No performance assessed.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Annex C10

Appendix 28 / 31

Table 26: Characteristic resistances under shear load with lever arm - steel failure of channel bolts

Channel bolt ²⁾ thread diameter	M8	M10	M12	M16	M20					
Steel failure										
Characteristic flowural registeres	N/0	[NIm]		8.8	30,0	59,8	104,8	266,4	519,3	
	IVI°Rk,s		FBC-(3-) (N-)	A4-70	_2)	_2)	91,7	233,1	454,4	
Partial factor				8.8		1,25				
Farliar factor	γMs ''	[-]	FBC-(3-) (N-)	A4-70		1,56				
			FBC-28/15	8.8	16,7	18,1	19,4	_3)	_3)	
			FBC-38/17	8.8	_3)	22,7	24,0	_3)	_3)	
			FBC-S-29/20	8.8	_3)	_3)	20,0	_3)	_3)	
			FBC-S-38/23	8.8	_3)	_3)	23,7	25,7	_3)	
		[FBC-40/22	8.8	_3)	23,5	24,8	26,8	_3)	
	a	limul	FBC-N-40/22	8.8	_3)	_3)	_3)	26,9	_3)	
			FBC-50/30	8.8	_3)	27,7	29,0	31,0	33,3	
			FBC-N-50/30	8.8	_3)	_3)	_3)	31,5	33,9	
			FBC-40/22	A4-70	_3)	_3)	24,7	26,7	_3)	
			FBC-50/30	A4-70	_3)	_3)	28.8	30.9	33.1	

¹⁾ In absence of other national regulations.

²⁾ Materials according to Annex A7, Table 6.

³⁾ No performance assessed.

The characteristic flexure resistance according to Table 26 is limited as follows:

$$\begin{split} & \mathsf{M}^{0}_{\mathsf{Rk},s} \leq 0, 5 \cdot \mathsf{N}^{0}_{\mathsf{Rk},s,l} \cdot a \; (\mathsf{N}^{0}_{\mathsf{Rk},s,l} \; \text{according to Annex C1, Table 10}) \\ & \mathsf{M}^{0}_{\mathsf{Rk},s} \leq 0, 5 \cdot \mathsf{N}_{\mathsf{Rk},s} \cdot a \; (\mathsf{N}_{\mathsf{Rk},s} \; \text{according to Annex C5, Table 18}) \\ & \mathsf{a} = \mathsf{Internal lever} \; \mathsf{arm} \; \mathsf{according to Table 26} \\ & \mathsf{T}_{\mathsf{s}} = \mathsf{Tension} \; \mathsf{force} \; \mathsf{acting} \; \mathsf{on} \; \mathsf{the channel lips} \\ & \mathsf{C}_{\mathsf{s}} = \mathsf{Compression} \; \mathsf{force} \; \mathsf{acting} \; \mathsf{on} \; \mathsf{the channel lips} \end{split}$$

fischer Anchor Channel FES with fischer Channel Bolts FBC

Annex C11

Characteristic resistances under shear load of channel bolts

Performance

Annex CTT

Appendix 29 / 31

Cha	annel bolt thread dia	imeter				M8	M10	M12	M16	M20
Ste	el failure:	Anchor, connectio lips, channel bolts	n betwee	en anch	or an	d chanr	iel, loca	l flexur	e of ch	annel
	FES-H-S-29/2	FBC-S-29/20	R30 R60 R90 R120			_ 2)	_ 2)	2,5 2,4 1,7 1,4	_ 2)	_ 2)
	FES-H-S-38/23	FBC-S-38/23	R30 R60 R90 R120	-		_ 2)	_ 2)	_ 2)	4,5 3,4 2,3 1,7	_ 2)
e.	FES-H(-I)-40/22	FBC-40/22	R30 R60 R90 R120			_ 2)	1,3 1,0 0,7 0,6	2,0 1,7 1,4 1,3	4,5 3,4 2,3 1,7	_ 2)
re exposur	FES-H(-I)-50/30	FBC(-N)-50/30	R30 R60 R90 R120	-		_ 2)	1,3 1,0 0,7 0,6	2,0 1,7 1,4 1,3	5,2 4,2 3,2 2,7	5,2 4,2 3,2 2,7
ce under fi	FES-H(-I)-52/34	FBC(-N)-50/30	R30 R60 R90 R120	N _{Rk,s,fi}	5LA 13	_ 2)	1,3 1,0 0,7 0,6	2,0 1,7 1,4 1,3	5,2 4,2 3,2 2,7	8,0 6,5 5,0 4,2
ic resistan	FES-C-28/15	FBC-28/15	R30 R60 R90 R120	V _{Rk,s,fi}	[((), 4]	0,6 0,6 0,5 0,4	1,3 1,0 0,7 0,6	1,3 1,0 0,7 0,6	_ 2)	_ 2)
naracterist	FES-C-38/17	FBC-38/17 FBC-S-38/23-M16	R30 R60 R90 B120			_ 2)	1,3 1,0 0,7 0,6	1,3 1,0 0,7 0,6	3,5 2,8 1,8 1,3	_ 2)
C	FES-C-40/25	FBC-40/22	R30 R60 R90 R120			_ 2)	1,8 1,5 1,1 0,8	3,0 2,4 1,7 1,4	3,5 2,8 1,8 1,3	_ 2)
	FES-C-49/30	FBC-50/30	R30 R60 R90 R120			_ 2)	1,3 1,0 0,7 0,6	2,9 2,4 1,8 1,6	3,1 2,5 1,9 1,6	3,1 2,5 1,9 1,6
	FES-C-54/33	FBC-50/30	R30 R60 R90 R120			_ 2)	1,3 1,0 0,7 0.6	2,9 2,4 1,8 1.6	3,1 2,5 1,9 1.6	3,1 2,5 1,9 1.6
Part	ial factor			γMs,fi ¹⁾	[-]		, , , 	1,0	. ,	, , , , , , , , , , , , , , , , , , ,

In absence of other national regulations.
 ²⁾ No performance assessed.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Characteristic resistance under fire exposure

Annex C12

Table 28: Min	Table 28: Minimum axis distance under fire exposure											
Anchor Cha	nnel F	ES-	C-28/15	C-38/17	H-S-29/20	H-S-38/23	C-40/25 H-40/22 H-40/22-P H-I-40/22	C-49/30 H50/30 H-50/30-P H-I-50/30	C-54/33 H-52/34 H-I-52/34			
	R30		35	35	35	35	35	35	50			
Minimum axis	R60	a	35	35	35	35	35	35	50			
distance	R90	[mm]	45	45	45	45	45	45	50			
	R120		60	60	60	60	60	60	65			

Fire exposure from one side only.

Fire exposure from more than one side.

fischer Anchor Channel FES with fischer Channel Bolts FBC

Performance Characteristic resistance under fire exposure Annex C13

Appendix 31 / 31