

DECLARATION OF PERFORMANCE

DoP 0314

for fischer Bolt anchor FAZ II Plus dynamic (Post-installed fastening in cracked or uncracked concrete)

ΕN

1. <u>Unique identification code of the product-type:</u> **DoP 0314**

2. Intended use/es: Post-installed fasteners for use in concrete under fatigue cyclic loading, see appendix, especially

annexes B1- B4.

3. Manufacturer: fischerwerke GmbH & Co. KG, Klaus-Fischer-Str. 1, 72178 Waldachtal, Germany

4. Authorised representative:

5. System/s of AVCP: 1

6. European Assessment Document: EAD 330250-00-0601, Edition 06/2021

European Technical Assessment: ETA-20/0897; 2022-12-20

Technical Assessment Body: DIBt- Deutsches Institut für Bautechnik

Notified body/ies: 2873 TU Darmstadt

7. Declared performance/s:

EAD 330250-00-0601; Table 2.1

Mechanical resistance and stability (BWR 1)

Characteristic resistance to tension load (static and quasi-static loading) Method A:

Resistance to steel failure: Annex C1
Resistance to pull- out failure: Annex C1
Resistance to concrete cone failure: Annex C1

Robustness: Annex C1

Minimum edge distance and spacing: Annexes C5, C6 Edge distance to prevent splitting under load: Annex C1

Characteristic resistance to shear load (static and quasi-static loading), Method A:

Resistance to steel failure (shear load): Annex C2

Resistance to pry-out failure: Annex C2

Displacements:

Displacements under static and quasi-static loading: Annex C9

Characteristic resistance and displacements for seismic performance categories C1 and C2:

Resistance to tension load, category C1: Annex C7

Resistance to tension load, displacements, category C2: Annexes C8, C9

Resistance to shear load, category C1: Annex C7

Resistance to shear load, displacements, category C2: Annexes C8, C9

Factor for annular gap: Annexes C7, C8

Safety in case of fire (BWR 2)

Reaction to fire: Class (A1)

Resistance to fire:

Fire resistance to steel failure (tension load): Annex C3
Fire resistance to pull-out failure (tension load): Annex C3
Fire resistance to steel failure (shear load): Annexes C3. C4

Aspects of durability:

Durability: Annexes A3, B1

EAD 330250-00-0601; Table 2.5

Assessment Method C: Linearized function Mechanical resistance and stability (BWR 1)

Characteristic steel fatigue resistance under tension loading: Annexes C10, C11

Characteristic concrete cone, pull-out, splitting and blow out fatigue resistance under tension loading: Annexes C10, C11

Characteristic pull-out or combined pull-out /concrete cone fatigue resistance under tension loading: Annexes C10, C11

Characteristic steel fatigue resistance under shear loading: Annexes C10, C11 $\,$

Characteristic concrete edge fatigue resistance under shear loading: Annexes C10, C11

Characteristic concrete pry-out fatigue resistance under shear loading: Annexes C10, C11

Characteristic steel fatigue resistance under tension and shear: Annexes C10, C11 $\,$

Load transfer factor for tension and shear loading: Annexes C10, C11

Fischer DATA DOP_ECs_V82.xlsm 1/2

8. Appropriate Technical Documentation and/or Specific Technical Documentation:

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Dr. Oliver Geibig, Managing Director Business Units & Engineering

Jürgen Grün, Managing Director Chemistry & Quality

Tumlingen, 2023-02-01

This DoP has been prepared in different languages. In case there is a dispute on the interpretation the English version shall always prevail.

The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Fischer DATA DOP_ECs_V82.xlsm 2/2

Specific Part

1 Technical description of the product

The fischer Bolt Anchor FAZ II Plus dynamic is an anchor made of galvanised steel (FAZ II Plus dynamic) or stainless steel (FAZ II Plus dynamic R) which is placed into a drilled hole and anchored by torque-controlled expansion.

The fastener consists of an fischer Bolt Anchor FAZ II Plus with cone bolt, expansion clip, washer and hexagon nut and a Dynamic set with filling conical washer, spherical washer and lock nut.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic (static, quasi-statisc loading and seismic)	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annexes C 1, C 5, C 6
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 2
Displacements (static and quasi-static loading)	See Annex C 9
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annexes C 7 to C 9

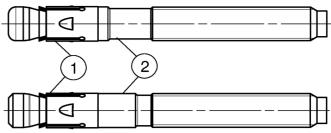
Essential characteristic (fatigue loading, Linearized function - Assessment method C)	Performance	
Characteristic fatigue resistance under cyclic tension loading		
Characteristic steel fatigue resistance $\Delta N_{Rk,s,0,n}$ (n = 1 to n = ∞)		
Characteristic concrete cone, pull-out, splitting and blow out fatigue resistance $\Delta N_{Rk,c,0,n}$ $\Delta N_{Rk,sp,0,n}$ $\Delta N_{Rk,cb,0,n}$ $(n$ = 1 to n = ∞)	See Annexes C 10 and C 11	
Characteristic pull- out fatigue resistance		
$\Delta N_{Rk,p,0,n}$ $(n = 1 \text{ to } n = \infty)$		

Essential characteristic (fatigue loading, Linearized function - Assessment method C)	Performance						
Characteristic fatigue resistance under cyclic shear loading							
Characteristic steel fatigue resistance $\Delta V_{Rk,s,0,n}$ $(n = 1 \text{ to } n = \infty)$							
Characteristic concrete edge fatigue resistance $V_{Rk,c,0,n}$ $(n = 1 \text{ to } n = \infty)$	See Annexes						
Characteristic concrete pry out fatigue resistance	C 10 and C 11						
$\Delta V_{Rk,cp,0,n} \ (n=1 \text{ to } n=\infty)$							
Characteristic fatigue resistance under cyclic combined tension and shear	loading						
Characteristic steel fatigue resistance a_s ($n = 1$ to $n = \infty$)	See Annexes C 10 and C 11						
Load transfer factor for cyclic tension and shear loading							
Load transfer factor ψ_{FN}, ψ_{FV}	See Annexes C 10 and C 11						

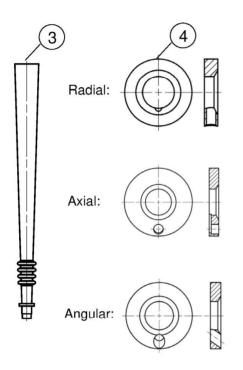
3.2 Safety in case of fire (BWR 2)

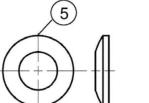
Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 3 and C 4

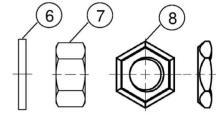
3.3 Aspects of durability

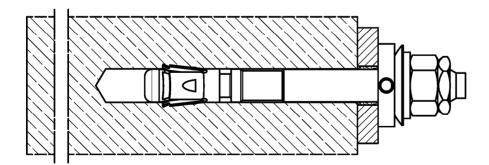

Essential characteristic	Performance
Durability	See Annex B 1

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base


In accordance with European Assessment Document No. 330250-00-0601, the applicable European legal act is: [96/582/EC].

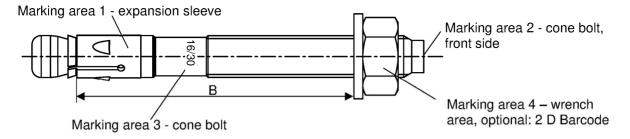

The system to be applied is: 1




Cone bolt manufactured by turning:

- ① Expansion sleeve
- ② Cone bolt (cold formed or turned)
- 3 Filling adapter
- Filling conical washer (various versions)
- Spherical washer
- 6 Washer
- Hexagon nut
- 8 Lock nut

(Fig. not to scale)


fischer Bolt Anchor FAZ II Plus dynamic

Product description Installed condition

Annex A 1

Appendix 3 / 20

Product marking and letter-code:

Product marking, example:

Brand | type of fastener placed at marking area 1 or 3

FAZ II + 16/30 R

Thread size / max. thickness of the fixture (t_{fix}) identification R placed at marking area 1 or 3

FAZ II Plus dynamic: carbon steel, galvanised

FAZ II Plus dynamic R: stainless steel

Table A2.1: Letter - code at marking area 2:

Marking		(a)	(b)	(c)	(d)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(K)
Max. t _{fix,g}	_{es} [mm]	5	10	15	20	5	10	15	20	25	30	35	40	45	50
	M16	70	75	80	85	90	95	100	105	110	115	120	125	130	135
B ≥ [mm]	M20					105	110	115	120	125	130	135	140	145	150
	M24			-		130	135	140	145	150	155	160	165	170	175
Marking		(L)	(M)	(N)	(O)	(P)	(R)	(S)	(T)	(U)	(V)	(W)	(X)	(Y)	(Z)
Max. t _{fix,g}	es [mm]	60	70	80	90	100	120	140	160	180	200	250	300	350	400
	M16	145	155	165	175	185	205	225	245	265	285	335	385	435	485
B ≥ [mm]	M20	160	170	180	190	200	220	240	260	280	300	350	400	450	500
	M24	185	195	205	215	225	245	265	285	305	325	375	425	475	525

Calculation existing her for installed fasteners:

existing $h_{ef} = B_{(according to table A2.1)} - existing <math>t_{fix,ges}$

t_{fix,ges} see Annex B2

(Fig. not to scale)

fischer Bolt Anchor FAZ II Plus dynamic	
Product description	Annex A 2
Product marking and letter code	Appendix 4 / 20

Table A3.1: Materials FAZ II Plus dynamic							
Dort	Designation	Material					
Part	Designation	FAZ II Plus dynamic	FAZ II Plus dynamic R				
		Steel	Stainless steel R				
	Steel grade	Zinc plated ≥ 5 μm, ISO 4042:2018	Acc. to EN 10088:2014 Corrosion resistance class CRC III acc. to EN 1993-1-4:2006+A1:2015				
1	Expansion sleeve	Cold strip, EN 10139:2016 or stainless steel EN 10088:2014	Stainless steel EN 10088:2014				
2	Cone bolt	Cold form steel or free cutting steel					
3	Filling adapter	Р	lastic				
4	Filling conical washer	Cold form stool or free sutting stool	Otaliala a ataut				
5	Spherical washer	Cold form steel or free cutting steel	Stainless steel EN 10088:2014				
6	Washer	Cold strip, EN 10139:2016	EN 10000.2014				
7	Hexagon nut	Steel, property class min. 8, EN ISO 898-2:2012	Stainless steel EN 10088:2014; ISO 3506-2:2018; property class – min. 70				
8	Lock nut	Cold strip, EN 10139:2016	Stainless steel EN 10088:2014				
	Injection cartridge Mortar, hardener, filler (compressive strength ≥ 50 N/mm²)						

Materials

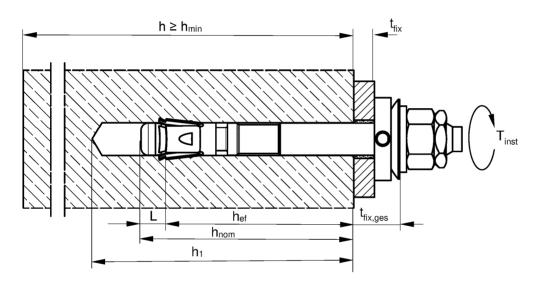
Fastenings subject to: FAZ II Plus dynamic, FAZ II Plus dynamic R Size M16 M24 M20 Hammer drilling with standard drill bit Hammer drilling with hollow drill bit with automatic cleaning Static and quasi-static loading in cracked and 1 uncracked concrete Seismic actions category C1 and C2 1 - not in combination with fatigue loading Fire exposure 1 - not in combination with fatigue loading Fatique load in cracked and uncracked concrete - not in combination with seismic- or fire exosure

Specifications of intended use

Base materials:

- Compacted reinforced and unreinforced normal weight concrete without fibres (cracked and uncracked) according to EN 206:2013+A2:2021
- Strength classes C20/25 to C50/60 according to EN 206:2013+A2:2021

Use conditions (Environmental conditions):


- Structures subject to dry internal conditions (FAZ II Plus dynamic, FAZ II Plus dynamic R)
- For all other conditions according to EN 1993-1-4:2006 + A1:2015 corresponding to corrosion resistance class CRC III: for FAZ II Plus dynamic R

Design:

- Fastenings are to be designed under the responsibility of an engineer experienced in fastenings and concrete work
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The
 position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement
 or to supports, etc.)
- Design of fastenings according to EN 1992-4:2018 and EOTA Technical Report TR 061: 2020-08 "Design method for fasteners in concrete under fatigue cyclic loading"
- Fastenings in stand-off installation according to EN 1992-4:2018, 6.2.2.3 are not covered by this European Technical Assessment
- · Fatigue design cannot be done in combination with seismic- or fire exposure

fischer Bolt Anchor FAZ II Plus dynamic	
Intended use Specifications	Annex B 1 Appendix 6 / 20

Table B2.1: Installation parameters					
C:	FAZ II Plus dynamic, FAZ II Plus dynamic R				
Size	M16	M20	M24		
Nominal drill hole diameter	$d_0 =$		16	20	24
Maximum bit diameter with hammer or hollow drilling	d _{cut,max}	[mm]	16,50	20,55	24,55
Effective embedment depth	h _{ef} ≥		65 - 160	100 - 180	125
Length from hef to end of cone bolt	L	[17,5	20,0	23,5
Overall fastener embedment depth in the concrete	h _{nom} ≥	[mm]		h _{ef} + L	
Depth of drill hole to deepest point	h₁ ≥		h _{nom} + 5	h _{nom} +	- 10
Diameter of clearance hole in the fixture	$d_{f} \leq$	[mm]	18	22	26
Required setting torque	T _{inst} =	[Nm]	110	200	270
Minimum thickness of the fixture	t _{fix,min} ≥	[mm]	15	20	24
Thickness of the fixture	t _{fix,ges} =	· [mm]	t _{fix} + 11	t _{fix} + 13	t _{fix} + 17

h_{ef} = Effective embedment depth

 t_{fix} = Thickness of the fixture

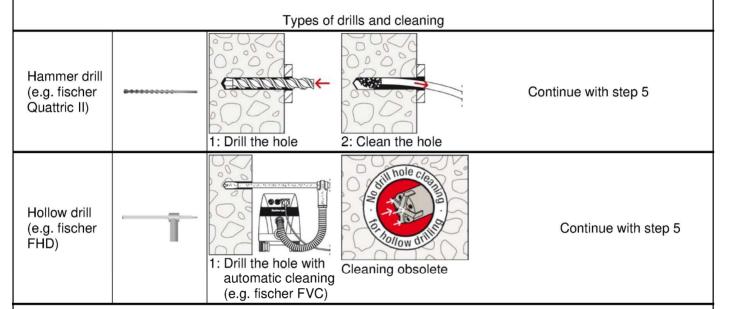
 $t_{\text{fix,ges}}$ = Thickness of the fixture and the filling set

h₁ = Depth of drill hole to deepest point
 h = Thickness of the concrete member
 h_{min} = Minimum thickness of concrete member

h_{nom} = Overall fastener embedment depth in the concrete

T_{inst} = Required setting torque

L = Length from her to end of cone bolt


(Fig. not to scale)

fischer Bolt Anchor FAZ II Plus dynamic	
Intended use	Annex B 2
Installation parameters	Appendix 7 / 20

Installation instructions:

- Fastener installation carried out by appropriately qualified personnel according to the design drawings and under the supervision of the person responsible for technical matters on the site
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener
- Hammer- or hollow drilling according to Annex B 2
- Drill hole created perpendicular +/- 5° to concrete surface, positioning without damaging the reinforcement
- In case of aborted hole: new drilling at a minimum distance twice the depth of the aborted drill hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application

Installation instructions: Drilling and cleaning the hole

fischer Bolt Anchor FAZ II Plus dynamic	
Intended use	Annex B 3
Installation instructions	Appendix 8 / 20

Installation instr	uctions: Installation of the fastener
	5: Check the position of the conical washer
	6: Set the fastener. E.g. with fischer FA-ST II setting tool:
Tinst	7: Apply T _{inst}
	8: Tighten lock nut manually, then use wrench to give another quarter turn
	9: The gap between anchor and fixture (annular gap) must be filled with mortar (compressive strength ≥ 50 N/mm² e.g. fischer FIS HB, FIS V Plus, FIS EM Plus or FIS SB) via the fillable conical washer.
t _{fix} ,ges	10: Correctly installed fastener

Intended use Installation instructions

fischer Bolt Anchor FAZ II Plus dynamic

Annex B 4

Appendix 9 / 20

Table C1.1: Characteristic values of tension resistance under static and quasi-static action								
	Size				dynamic, FAZ II Plus			
-	0.20			M16	M20	M24		
Steel failure					T			
Characteristic	FAZ II Plus dynamic	N _R	,s [kN]	78,7	108,4	180,0		
resistance	FAZ II Plus dynamic R	INH	c,s [KIN]	83,0	127,6	187,0		
Partial factor for	FAZ II Plus dynamic	γMs	1) [-]	1,40	1,40	1,50		
steel failure	FAZ II Plus dynamic R	γMS	, [-]	1,40	1,45	1,50		
Pullout failure								
Effective embedm calculation	•	h _{ef}	[mm]	65 - 160	100 - 180	125		
Characteristic res cracked concrete	C20/25	$N_{Rk,p}$	[kN]	27,0	34,4	48,1		
Characteristic res uncracked concre		(C20/25)		38,6	49,2	68,8		
			C25/30		1,12			
Increasing factor		- [-] - -	C30/37	1,22				
cracked or uncrac	ked		C35/45	1,32				
concrete			C40/50	1,41 1,50				
$N_{Rk,p} = \psi_c \cdot N_{Rk,p}$ (C20/25)		C45/55					
			C50/60		1,58			
Installation sensit	vity factor	γinst	[-]		1,0			
Concrete cone a		failure						
Factor for uncrack	ced concrete	k ucr,N	[-]		11,02)			
Factor for cracked		k _{cr,N}	l J		7,72)			
Characteristic spa	ıcing	S _{cr,N}	[mm]	3 ⋅ h _{ef}				
Characteristic ed	ge distance	C cr,N	[]		1,5 · h _{ef}			
Characteristic spa for splitting failure		S _{cr,sp}	[mm]		2 · C _{cr,sp}			
Characteristic ed						- ⁴⁾		
distance for splitting failure	h ≥ 160 ≥ 200	Ccr,sp	[mm]	2⋅h _{ef}	2,4·h _{ef}	- 2,2·h _{ef}		
Characteristic res to splitting	istance	N^0 Rk,sp	[kN]		min {N ⁰ _{Rk,c} ; N _{Rk,p} } ³⁾			
1) In absence of of 2) Based on cond 3) No _{Rk,c} according 4) No performance	rete strength g to EN 1992-	as cylinder	strength					

fischer Bolt Anchor FAZ II Plus dynamic	
Performances	Annex C 1
Characteristic values of tension resistance under static and quasi-static action	Appendix 10 / 20

Cino			FAZ II Plus dynamic, FAZ II Plus dynamic R			
Size		Γ	M16	M20	M24	
Steel failure without le	ver arm					
Characteristic FAZ II P	lus dynamic with filling	\/0=. [I/N]]	69,8	85,6	128,3	
resistance FAZ II P	lus dynamic with filling R	V ⁰ _{Rk,s} [kN]	73,6	117,9	158,1	
Partial factor for steel fai	lure	γMs ¹⁾		1,25		
Factor for ductility		$\frac{1}{k_7}$ [-]		1,0		
Steel failure with lever	arm and Concrete pryou	t failure				
Effective embedment de	pth for calculation	h _{ef} [mm]	85 - 160	100 - 180	125	
Characteristic bending	FAZ II Plus dynamic	Local All	266	422	864	
resistance	FAZ II Plus dynamic R	M ⁰ _{Rk,s} [Nm]	256	519	898	
Factor for pryout failure		k ₈ [-]		3,2		
Effective embedment de	pth for calculation	h _{ef} [mm]	65 - < 85			
Characteristic bending	FAZ II Plus dynamic	NAO [N.Ima]	251]	D)	
resistance	FAZ II Plus dynamic R	M ⁰ _{Rk,s} [Nm] ⊢	256	_2)		
Factor for pryout failure		k ₈ [-]	3,2			
Partial factor for steel fai	lure	γMs ¹⁾		1,25		
Factor for ductility	$\frac{r^{\text{NIS}}}{k_7}$ [-]		1,0			
Concrete edge failure						
Effective embedment de	pth for calculation			h _{ef}		
Outside diameter of a fa	stener	d _{nom}	16	20	24	

¹⁾ In absence of other national regulations

fischer Bolt Anchor FAZ II Plus dynamic	
Performances	Annex C 2
Characteristic values of shear resistance under static and quasi-static action	Appendix 11 / 20

²⁾ No performance assessed

Table C3.1: Characteristic values of **tension** resistance under **fire exposure** – not in combination with fatigue loading

0:			FAZ II Plus dynamic, FAZ II Plus dynamic R				
Size				M	16	M20	M24
			h _{ef} ≥ [mm]	65 - < 85	85 - 160	100 - 180	125
			R30_	9,	.4	14,7	21,1
	FAZ II Plus	NI	R60	7,	,7	12,0	17,3
	dynamic	N _{Rk,s,fi}	R90	6,0		9,4	13,5
Characteristic resistance			R120	5,	,2	8,1	11,6
steel failure	FAZ II Plus dynamic R	_	R30	21	,8	34,3	49,4
Steer failure		N _{Rk,s,fi} -	R60	13	3,2	20,7	29,3
			R90_	10),5	18,3	26,4
			R120 [kN]	8,	,6	17,3	25,0
Characteristic resistance Concrete cone failure		N _{Rk,c,fi}	R30 - R90		7,7 ·	h _{ef} ^{1,5} · (20) ^{0,5} · h _{ef} / 200 /	/ 1000
			R120		7,7 · h∈	ef ^{1,5} · (20) ^{0,5} · hef / 200 / 1	000 · 0,8
		_	R30				
Characteristic	Characteristic resistance pullout failure		R60	4,5	6,8	8,6	12,0
pullout failure			R90				
			R120	3,6	5,4	6,9	9,6

Table C3.2: Characteristic values of **shear** resistance under **fire exposure** – not in combination with fatigue loading

1				R.	30	ROU		
FAZ II Plus o	dynamic			V _{Rk,s,fi,30} [kN]	M ⁰ _{Rk,s,fi,30} [Nm]	V _{Rk,s,fi,60} [kN]	M ⁰ _{Rk,s,fi,60} [Nm]	
M16		65		11,7	19,9	9,1	16,3	
M20	h _{ef} ≥	100	[mm]	18,2	39,0	14,2	31,8	
M24		125		26,3	67,3	20,5	55,0	
				R	90	R [.]	120	
FAZ II Plus o	dynamic		_	V _{Rk,s,fi,90} [kN]	M ⁰ Rk,s,fi,90 [Nm]	V _{Rk,s,fi,120} [kN]	120 M ⁰ Rk,s,fi,120 [Nm]	
FAZ II Plus o	dynamic	65	_	V _{Rk,s,fi,90}	M ⁰ Rk,s,fi,90	V Rk,s,fi,120	M ⁰ Rk,s,fi,120	
	dynamic h _{ef} ≥		- [mm]	$V_{Rk,s,fi,90}$ [kN]	M ⁰ _{Rk,s,fi,90} [Nm]	V _{Rk,s,fi,120} [kN]	M ⁰ Rk,s,fi,120 [Nm]	

Concrete pryout failure according to EN 1992-4:2018

fischer Bolt Anchor FAZ II Plus dynamic	
Performances	Annex C 3
Characteristic values of resistance under fire exposure	Appendix 12 / 20

Table C4.1: Characteristic values of **shear** resistance under **fire exposure** – not in combination with fatigue loading

EAZ II Diug	dynamia	В		R3	30	R60	
FAZ II Plus	аупаппс	; n		$V_{Rk,s,fi,30}$ [kN]	M ⁰ _{Rk,s,fi,30} [Nm]	$V_{Rk,s,fi,60}$ [kN]	M ⁰ _{Rk,s,fi,60} [Nm]
M16		65		21,8	46,2	13,2	27,9
M20	h _{ef} ≥	100	[mm]	34,3	90,9	20,7	54,9
M24		125		49,4	157,2	29,3	93,1
EAZ II Diug 4	dynamia	В		R9	0	R1	20
FAZ II Plus	dynamic	R		R9 V _{Rk,s,fi,90} [kN]	M ⁰ Rk,s,fi,90 [Nm]	R1 V _{Rk,s,fi,120} [kN]	20 M ⁰ _{Rk,s,fi,120} [Nm]
FAZ II Plus o	dynamic	R 65					
	dynamic h _{ef} ≥		_ [mm]	V _{Rk,s,fi,90} [kN]	M ⁰ _{Rk,s,fi,90} [Nm]	V _{Rk,s,fi,120} [kN]	M ⁰ Rk,s,fi,120 [Nm]

Concrete pryout failure according to EN 1992-4:2018

Table C4.2: Minimum spacings and minimum edge distances of fasteners under **fire exposure** for **tension** and **shear** load

Size			FAZ II Plus dynamic, FAZ II Plus dynamic R				
Size			M16	M20	M24		
Spacing	Smin			Annex C5			
Edge distance	Cmin	[mm]	for fire exposi	$c_{min} = 2 \cdot h_{ef}$, ure from more than one side	e c _{min} ≥ 300 mm		

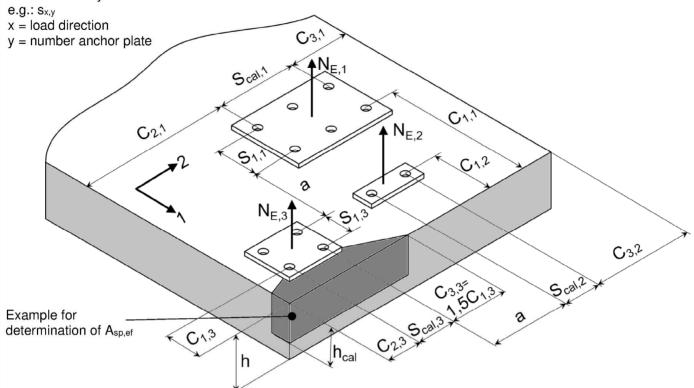
fischer Bolt Anchor FAZ II Plus dynamic	
Performances	Annex C 4
Characteristic values of resistance under fire exposure	Appendix 13 / 20

Table C5.1: Minimum thickness of concrete members, minimum spacing and minimum edge distance

Cizo			FAZ II Plus dynamic, FAZ II Plus dynamic R		
Size			M16	M20	M24
Minimum edge distance				-	
Uncracked concrete			65	95	135
Cracked concrete	— C _{min}		05	85	100
Corresponding spacing	s	[mm]		according to Annex C	6
Minimum thickness of concrete member	h _{min}	[]	140	160	200
Thickness of concrete member	h ≥			max. {h _{min} ; 1,5 · h _{ef} }	
Minimum spacing					
Uncracked concrete	_		65	95	100
Cracked concrete	— Smin		05	95	100
Corresponding edge distance	С	[mm]		according to Annex C	6
Minimum thickness of concrete member	h _{min}	[]	140	160	200
Thickness of concrete member	h≥			max. {h _{min} ; 1,5 · h _{ef} }	
Minimum splitting area					
Uncracked concrete	^	[·1000	67	100	117,5
Cracked concrete	— A _{sp,req}	mm²]	50	77	87,5

Table C5.2: Calculated values for minimum spacing and minimum edge distances for cracked concrete with one edge (c_2 and $c_3 \ge 1,5$ c_1)

Type of anchor / s	FAZ II Plus dynamic, FAZ II Plus dynamic R				
Type of afferior 7 s	M16		M20	M24	
Effective anchorage depth	h _{ef} ≥ [mm]	65	85	100	125
Minimum thickness of concrete member	h≥ [mm]	140	180	160	200
Minimum engeing	s _{min} [mm]	6	5	95	100
Minimum spacing -	for c ≥ [mm]	100	75	130	115
Minimum adaa distansa	c _{min} [mm]	6	5	85	100
Minimum edge distance -	for s ≥ [mm]	165	85	230	140


fischer Bolt Anchor FAZ II Plus dynamic	
Performances Minimum thickness of member, minimum spacings and edge distances	Annex C 5 Appendix 14 / 20

Determination of Asp,ef for each existing free edge

Splitting failure applied for minimum edge distance and spacing in depending on her

Definition Index:

cal = calculatory

Example for different anchor plates: For considering all free edges the direction 1 and 2 must be swaped.

General formulation for each free edge: $A_{sp,ef} = (c_2 + s_{cal} + c_3) \cdot h_{cal} \ge (^n/_2) \cdot A_{sp,req}$

with:

Edge distance c₁: c_{min} ≤ c₁

Edge distance c_2 : $c_{min} \le c_2 \le 1,5 \cdot c_1$ Edge distance c_3 : $c_{min} \le c_3 \le 1,5 \cdot c_1$

Calculation spacing, distance between outer anchors s_{cal} : $s_{min} \le s_{cal} \le 3,0 \cdot c_1$

Distance between group of anchors a: For $a \ge 3.0$ c₁ no influence between the anchor groups is taken into account.

Number of anchors n of an anchor plate as well close and parallel to the edge

Effective member thickness h_{cal} : $h_{min} \le h$; $h_{cal} \le h$; $h_{cal} \le (h_{ef} + 1.5 \cdot c_1)$

c₁, c₂, c₃, h and s_{cal} have to be set in way that the requirement is fullfiled

For the calculation of minimum spacing and minimum edge distance of fasteners in combination with different embedment depths and thicknesses of concrete members the following equation shall be fulfilled:

$$A_{sp,req} < A_{sp,ef}$$

A_{sp,req} = required splitting area (according to Annex C 5)

 $A_{sp,ef}$ = effective splitting area

(Fig. not to scale)

fischer Bolt Anchor FAZ II Plus dynamic	
Performances	Annex C 6
Minimum thickness of member, minimum spacings and edge distances	Appendix 15 / 20

				with fatigue load	FAZ II Plus dynamic, FAZ II Plus d			
Size				M16	M20	M24		
Effective embedi	ment depth	h _{ef}	[mm]	85 - 160	100 - 180	125		
Nith filling of the	annular gap	$lpha_{ extsf{gap}}$	[-]		1,0			
Steel failure N _{RI}	$_{k,s,C1} = N_{Rk,s}; \gamma_{Ms,C}$	$_{\rm I} = \gamma_{\rm Ms}$ (see A	nnex C1)					
Pullout failure								
Characteristic re cracked concrete		$N_{Rk,p,C1}$	[kN]	27,0	34,4	48,1		
nstallation sensi	itivity factor	γinst	[-]		1,0			
Concrete cone	failure and splitt	ing failure N	$R_{k,c,C1} = \mathbf{N}^0$	$_{Rk,c}$; $N_{Rk,sp,C1} = N^0_{Rk}$	(,sp (see Annex C1)			
Steel failure wit	hout lever arm							
				FAZ II Plus dy	ynamic			
		h _{et}	[mm]	85 - 160	100 - 180	125		
Characteristic	With filling	$V_{Rk,s,C1}$	[kN]	59,3	85,6	102,6		
esistance C1				FAZ II Plus dy	namic R			
		h _{ef}	[mm]	85 - 160	100 - 180	125		
	With filling	$V_{Rk,s,C1}$	[kN]	62,6	94,3	126,5		
Partial factor for	steel failure	γMs,C1 ¹⁾	[-]		1,25			
) In absence of c	other national regu	•	.,		1,20			
) In absence of c	other national regu	•			1,20			

	calego	ı y UZ ·	– HOLIN	COIIID	ination with fatigue	dynamic, FAZ II Plu	s dynamic P
ize					M16	M20	M24
Vith filling of the	annular ga	n	C/ man	[-]	0	1,0	
teel failure N			α_{gap}		nex C1)	1,0	
ACCO IGNATO I	ink,s,02 — i i	ik,s, fivis,	62 — / IVIS (000 7111	nox o i j		
ullout failure	•						
M	_		h _{ef}	[mm]	85 - 160	100 - 180	125
Characteristic Esistance in c	rackad •		$N_{\text{Rk},p,C2}$	[kN]	21,5	30,7	39,6
oncrete C2	ackeu .		h _{ef}	[mm]	65 - <85	_	.2)
			$N_{Rk,p,C2}$	[kN]	16,4		
nstallation ser			γinst	[-]		1,0	
oncrete con	e failure a	nd split	ting fail	ure N _{Rk}	$_{,c,C2} = N^0_{Rk,c}; N_{Rk,sp,C2} =$	N ^o Rk,sp (see Annex C	:1)
teel failure w	ithout leve	er arm			P47 !! 5!		
			h _{ef}	[mm]	85 - 160	us dynamic 100 - 180	125
	With	filling	V _{Rk,s,C2}	[kN]	52,4	68,5	102,6
-	VVILII	ming	h _{ef}	[mm]	65 - <85	00,5	102,0
haracteristic	With	filling	V _{Rk,s,C2}	[kN]	52,4		_2)
esistance C2	***************************************	9	• 1 IK,5,02	[1414]	· · · · · · · · · · · · · · · · · · ·	s dynamic R	
-			h _{ef}	[mm]	85 - 160	100 - 180	125
	\\/i+b	filling	V _{Rk,s,C2}	[kN]	55,2	104,9	126,5
	With			[mm]	65 - <85		
	VVILII		h_{ef}		00 - <00		2)
	With	filling	${\sf h}_{\sf ef}$	[kN]	55,2		_2)
artial factor fo	With or steel		$V_{Rk,s,C2}$ $\gamma_{Ms,C2}$	[kN] [-]		1,25	_2)
) In absence o	With or steel of other nat	ional re	$V_{Rk,s,C2}$ $\gamma_{Ms,C2}$	[kN] [-]			_2)
	With or steel of other nat	ional re	$V_{Rk,s,C2}$ $\gamma_{Ms,C2}$	[kN] [-]			_2)
) In absence o	With or steel of other nat	ional re	$V_{Rk,s,C2}$ $\gamma_{Ms,C2}$	[kN] [-]			_2)
) In absence o	With or steel of other nat	ional re	$V_{Rk,s,C2}$ $\gamma_{Ms,C2}$	[kN] [-]			_2)
) In absence o	With or steel of other nat	ional re	$V_{Rk,s,C2}$ $\gamma_{Ms,C2}$	[kN] [-]			_2)
) In absence o	With or steel of other nat	ional re	$V_{Rk,s,C2}$ $\gamma_{Ms,C2}$	[kN] [-]			_2)
) In absence o	With or steel of other nat	ional re	$V_{Rk,s,C2}$ $\gamma_{Ms,C2}$	[kN] [-]			_2)
) In absence o	With or steel of other nat	ional re	$V_{Rk,s,C2}$ $\gamma_{Ms,C2}$	[kN] [-]			_2)
) In absence o	With or steel of other nat	ional re	$V_{Rk,s,C2}$ $\gamma_{Ms,C2}$	[kN] [-]			_2)
) In absence o	With or steel of other nat	ional re	$V_{Rk,s,C2}$ $\gamma_{Ms,C2}$	[kN] [-]			_2)
) In absence o	With or steel of other nat	ional re	$V_{Rk,s,C2}$ $\gamma_{Ms,C2}$	[kN] [-]			_2)
In absence o	With or steel of other nat	ional re	$V_{Rk,s,C2}$ $\gamma_{Ms,C2}$	[kN] [-]			_2)
) In absence o	With or steel of other nat	ional re	$V_{Rk,s,C2}$ $\gamma_{Ms,C2}$	[kN] [-]			_2)
) In absence o	With or steel of other nat	ional re	$V_{Rk,s,C2}$ $\gamma_{Ms,C2}$	[kN] [-]			_2)
) In absence o	With or steel of other nat	ional re	$V_{Rk,s,C2}$ $\gamma_{Ms,C2}$	[kN] [-]			_2)
) In absence o	With or steel of other nat	ional re	$V_{Rk,s,C2}$ $\gamma_{Ms,C2}$	[kN] [-]			_2)
) In absence o	With or steel of other nat	ional re	$V_{Rk,s,C2}$ $\gamma_{Ms,C2}$	[kN] [-]			_2)

Performances

Characteristic values of tension and shear resistance under seismic action C2

Annex C 8

Appendix 17 / 20

Table C9.1: Displacements under static and quasi static tension loads						
Size		FAZ II Plus dynamic, FAZ II Plus dynamic R				
		M16	M20	M24		
Displacement	 factor for tensile loa 	d ¹⁾				
δ_{N0} - factor	in cracked concrete		0,08	0,07	0,05	
$\delta_{N\infty}$ - factor	— III cracked concrete	- [mm/kN]	0,0	09	0,07	
δ_{N0} - factor	in uncracked	- [IIIII/KIN]	0,06	0,05	0,04	
$\delta_{N\infty}$ - factor	concrete		0,10	0,06	0,05	

Table C9.2: Displacements under static and quasi static shear loads

Size			IVI I O	IVIZU	IVIZ4		
Displacement – factor for shear load ²⁾							
				FAZ II Plus dynamic			
δ_{V0} - factor			0,10	0,09	0,07		
δ _{V∞} - factor		[mm/kN]	0,14	0,15	0,11		
	in cracked or uncracked concrete			FAZ II Plus dynamic F	₹		
δ_{V0} - factor			0,10	0,11	0,07		
δ _{V∞} - factor	_		0,15	0,17	0,11		

1) Calculation of effective displacement:

 $\delta_{N0} = \delta_{N0} - factor \cdot N$ $\delta_{N\infty} = \delta_{N\infty} - factor \cdot N$

N = Action tension loading

²⁾ Calculation of effective displacement:

1/2/

 $\delta v_0 = \delta v_0 - factor \cdot V$ $\delta v_\infty = \delta v_\infty - factor \cdot V$

V = Action shear loading

Table C9.3: Displacements under tension loads for category C2 for all embedment depths

Cizo		FAZ II Plu	ıs dynamic, FAZ II Plus d	lynamic R			
Size		M16	M20	M24			
DLS	δN,C2 (DLS)	4,4	5,6	4,8			
ULS	δN,C2 (ULS) [mm]	12,3	14,4	15,2			

¹⁾ No performance assessed

Table C9.4: Displacements under shear loads for category C2 for all embedment depths

Size		FAZ II Plus dynamic, FAZ II Plus dynamic R				
		M16	M20	M24		
DLS with filling	δv,c2 (DLS)	1,2	2,0	4,2		
ULS with filling	$\frac{\delta V, 62 (BLS)}{\delta V, C2 (ULS)}$ [mm]	3,1	4,4	7,4		

¹⁾ No performance assessed

fischer Bolt Anchor FAZ II Plus dynamic	
Performances Displacements under tension and shear loads	Annex C 9 Appendix 18 / 20

Table C10.1: Essential characteristic values under tension and shear fatigue loads Design method I according to TR 061 – not in combination with seismic- or fire exosure

Required evic	lence					
•			Number of lo	ad cycles (n)		
		n ≤ 10 ⁴	$10^4 < n \le 5 \cdot 10^6$	$5 \cdot 10^6 < n \le 10^8$	n > 10 ⁸	
Tension load	capacit	y ¹⁾				
ΔN _{Rk,s,0,n} FAZ II Plus dynamic	— [kN] N ^{fat} Rk,s · 0,227		N ^{fat} _{Rk,s} · 10 ^{(-0,299-0,085·log(n))}	N ^{fat} _{Rk,s} · 10 ^{(-0,544-0,048} · log(n) N ^{fat} _{Rk,s} · 0,11	
ΔN _{Rk,s,0,n} FAZ II Plus dynamic R	נגואן	N ^{fat} Rk,s · 0,335	$N^{\text{fat}_{Rk,s}} \cdot 10^{(0,427-0,226 \cdot \log(n))}$	N ^{fat} Rk,s · 10 ^{(-0,405-0,101} · log(n	N ^{fat} _{Rk,s} · 0,05	
	ording to Annex C1					
Characteristic	fatigue r	esistance for	concrete cone and concrete splitti	ng and pull-out		
ΔN _{Rk,c,sp/p,0,n} FAZ II Plus dynamic; FAZ II Plus dynamic R	[kN]	N ^{fat} Rk,c,sp/p· 0,68	$N^{\text{fat}}_{Rk,c,sp/p} \cdot 10^{(0,055-0,055 \cdot \log(n))}$ $\geq N^{\text{fat}}_{Rk,c,sp/p} \cdot 0,5$	$N^{fat}_{Rk,c,sp/p} \cdot 0,5$	$N^{fat}_{Rk,c,sp/p} \cdot 0,5$	
			$N^{\text{fat}}_{\text{Rk,s}} = N_{\text{Rk,s}}$ acco	ording to Annex C1		
Shear load ca	pacity	\ #-+			<u> </u>	
ΔV _{Rk,s,0,n} FAZ II Plus		V ^{fat} Rk,s · 0,26	V ^{fat} _{Rk,s} · 10 ^{(-0,15-0,108} · log(n))	V ^{fat} _{Rk,s} · 10 ^{(-0,48-0,059} · log(n)	V ^{fat} Rk,s · 0,10	
dynamic	- [kN]	V ^{fat} R	$_{Rk,s} = 62.8 \text{ kN for M16; V}^{fat}_{Rk,s} = 82.9$	kN for M20; $V^{fat}_{Rk,s} = 128,3 I$	N for M24	
ΔV _{Rk,s,0,n} FAZ II Plus dynamic R	[]	V ^{fat} Rk,s · 0,26	$V^{\text{fat}_{Rk,s}} \cdot 10^{(-0,242-0,084 \cdot \log(n))}$	V ^{fat} _{Rk,s} · 10 ^{(-0,536-0,040} · log(n	V ^{fat} Rk,s · 0,13	
		V ^{fat} R	$_{Rk,s} = 62.8 \text{ kN for M16; V}^{fat}_{Rk,s} = 98.0$	kN for M20; $V^{fat}_{Rk,s} = 141,2 I$	N for M24	
Characteristic	fatigue r	esistance for	concrete edge and pryout failure			
ΔV _{Rk,c,cp,0,n} FAZ II Plus dynamic; FAZ II Plus dynamic R	[kN]	V ^{fat} Rk,c,cp · 0,58	V ^{fat} _{Rk,c,cp} · 10 ^{(0,08-0,08} · log(n)) ≥ V ^{fat} _{Rk,c,cp} · 0,5	V ^{fat} Rk,c,cp · 0,5	V ^{fat} Rk,c,cp ⋅ 0,5	
			$V^{\text{fat}}_{Rk,c,cp} = V_{Rk,c,cp}$ according to EN 19	992-4 with k ₈ according to An	nex C2	
Exponents ar			or			
Exponent for o	:omaine	u 10aa T		<u> </u>		
$\alpha_s = \alpha_{sn}$ Load-transfer	[-]	<u> </u>),7		
		T) F		
ΨFN = ΨFv	[-]	l ad load var),5		
	COIIIDIII	leu ioau, ver	ification regarding failure modes			
1) The appular	[-]	l ag oan bo om		1,5		
1) The annular gap filling can be omitted if there is a pure tension load						
fischer Bolt Ar	nchor FA	Z II Plus dyn	amic			
Performances Essential characteristic values under tension and shear fatigue loads Design method I according to TR 061 Annex C 10 Appendix 19 / 20						

Table C11.1: Essential characteristic values under tension and shear fatigue loads Design method II according to TR 061 – not in combination with seismic- or fire exosure

Circ			FAZ II Plus dynamic, FAZ II Plus dynami			
Size			М 16	M20	M24	
Tension load						
Effective embedment depth		h _{ef}	[mm]	65 - 160	100 - 180	125
Steel failure						
Characteristic steel fatigue resistance	FAZ II Plus dynamic	- ANI	[kN]	8,7	11,9	19,8
	FAZ II Plus dynamic R	- ∆N _{Rk,s,0,∞}	[KIN]	4,2	6,4	9,4
Concrete failure						
Characteristic concrete fatigue resistance		$\Delta N_{\text{Rk,c,0,}\infty}$	_	0,5 · N _{Rk,c}		
		$\Delta N_{\text{Rk},p,0,\infty}$	[kN]	$0,5\cdot N_{Rk,p}$		
		$\Delta N_{\text{Rk,sp,0,}}$			$0,5 \cdot N_{\text{Rk,sp}}$	
Shear load						
Shear load capacity, steel	failure without lever ar	m				
Characteristic steel fatigue resistance	FAZ II Plus dynamic	A > 7	[[45]]	6,3	8,3	12,8
	FAZ II Plus dynamic R	- ∆V _{Rk,s,0,∞}	[kN]	8,2	12,7	18,4
Concrete pryout failure						
Characteristic concrete fatigue resistance		ΔV _{Rk,cp,0,∞}	[kN]	$0,5 \cdot V_{Rk,cp}$		
Concrete edge failure						
Characteristic concrete fatigue resistance		ΔV _{Rk,c,0,∞}	[kN]	0,5 · V _{Rk,c}		
Value of hef (=lf) under shea	r load	h _{ef}		65 - 160	100 - 180	125
Effective outside diameter of the anchor		d _{nom}	- [mm] -	16	20	24
Exponents and load-trans	sfer factor					
Exponent for combined load	d					
$\alpha_s = \alpha_{sn}$ [-]	0,7					
Load-transfer factor				-		
$\Psi FN = \Psi Fv$ [-]			0,	5		
Exponent for combined lo	oad, verification regard	ing failure	modes	other than ste	eel failure	
α _c [-]	1,5					

fischer Bol	t Anchor FAZ I	l Plus	dynamic

Performances

Essential characteristic values under tension and shear fatigue loads Design method II according to TR 061

Annex C 11