

ΕN

DECLARATION OF PERFORMANCE

DoP 0335

for fischer Bolt Anchor FAZ II Classic (Mechanical anchor for use in concrete)

1. Unique identification code of the product-type: DoP 0335

2. Intended use/es: Post-installed fastening in cracked or uncracked concrete, see appendix, especially annexes B1-

B4.

3. Manufacturer: fischerwerke GmbH & Co. KG, Klaus-Fischer-Str. 1, 72178 Waldachtal, Germany

4. Authorised representative:

5. System/s of AVCP: 1

6. European Assessment Document: EAD 330232-01-0601
European Technical Assessment: ETA-23/0162; 2024-02-26
Technical Assessment Body: ETA-Danmark A/S
Notified body/ies: 2873 TU Darmstadt

7. Declared performance/s:

Mechanical resistance and stability (BWR 1)

Characteristic resistance to tension load (static and quasi-static loading) Method A:

- 1 Resistance to steel failure: Annex C1
- 2 Resistance to pull- out failure: Annex C1
- 3 Resistance to concrete cone failure: Annex C1
- 4 Robustness: Annex C1
- 5 Minimum edge distance and spacing: Annexes C4, C5
- 6 Edge distance to prevent splitting under load: Annex C1

Characteristic resistance to shear load (static and quasi-static loading), Method A:

- 7 Resistance to steel failure (shear load): Annex C2
- 8 Resistance to pry-out failure: Annex C2

Characteristic Resistance for simplified design:

- 9 Method B: NPD
- 10 Method C: NPD

Displacements:

11 Displacements under static and quasi-static loading: Annex C8

Characteristic resistance and displacements for seismic performance categories C1 and C2:

12 Resistance to tension load, displacements, category C1: Annexes C1, C6

Resistance to tension load, displacements, category C2: Annexes C1, C7, C8

- 13 Resistance to shear load, displacements, category C1: Annex C6 Resistance to shear load, displacements, category C2: Annexes C7, C8
- 14 Factor for annular gap: Annex C6

Safety in case of fire (BWR 2)

15 Reaction to fire: Class (A1)

Resistance to fire:

- 16 Fire resistance to steel failure (tension load): Annex C3
- 17 Fire resistance to pull-out failure (tension load): Annex C3
- 18 Fire resistance to steel failure (shear load): Annex C3

Durability:

19 Durability: Annexes A4, B1

Appropriate Technical Documentation and/or Specific

Technical Documentation:

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Dr.-Ing. Oliver Geibig, Managing Director Business Units & Engineering

Tumlingen, 2024-03-15

Jürgen Grün, Managing Director Chemistry & Quality

This DoP has been prepared in different languages. In case there is a dispute on the interpretation the English version shall always prevail.

The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Fischer DATA DOP_ECs_V95.xlsm 1/1

Translation guidance Essential Characteristics and Performance Parameters for Annexes

Me	Mechanical resistance and stability (BWR 1)							
Ch	Characteristic resistance to tension load (static and quasi-static loading) Method A:							
1	Resistance to steel failure:	N _{Rk,s} [kN]						
2	Resistance to pull-out failure:	N _{Rk,p} [kN], ψ _c [-]						
3	Resistance to concrete cone failure:	k _{cr,N} , k _{ucr,N} [-], h _{ef} , c _{cr,N} [mm]						
4	Robustness:	Vinst [-]						
5	Minimum edge distance and spacing:	c _{min} , s _{min} , h _{min} [mm]						
6	Edge distance to prevent splitting under load:	N ⁰ _{Rk,sp} [kN], c _{cr,sp} [mm]						
Ch	aracteristic resistance to shear load (static and quasi-static loading):							
7	Resistance to steel failure (shear load):	V ⁰ _{Rk,s} [kN], M ⁰ _{Rk,s} [Nm], k ₇ [-]						
8	Resistance to pry-out failure:	k ₈ [-]						
Ch	aracteristic Resistance for simplified design:	!						
9	Method B:	$\begin{aligned} & F^0_{Rk} \text{ [kN], } M^0_{Rk,s} \text{ [Nm], } \psi_c \text{ [-],} \\ & c_{cr}, s_{cr}, s_{min}, c_{min}, h_{min} \text{ [mm]} \end{aligned}$						
10	Method C:	F _{Rk} [kN], M ⁰ _{Rk,s} [Nm], C _{cr} , s _{cr} , s _{min} , h _{min} [mm]						
Dis	splacements:	Scr. Scr. Smin: Thin [Tillin]						
9	Displacements under static and quasi-static loading:	$\delta_{N0,}\delta_{N^\infty,}\delta_{V0,}\delta_{V^\infty}[mm]$						
Ch	I aracteristic resistance and displacements for seismic performance categories C1 and C2:							
12	Resistance to tension load, displacements, category C1:	$N_{Rk,s,C1}$, $N_{Rk,p,C1}$ [kN]						
	Resistance to tension load, displacements, category C2:	$N_{Rk,s,C2}$, $N_{Rk,p,C2}$ [kN], $\delta_{N,C2}$ [mm]						
13	Resistance to shear load, displacements, category C1:	V _{Rk,s,C1} [kN]						
	Resistance to shear load, displacements, category C2:	$V_{Rk,s,C2}$ [kN], $\delta_{V,C2}$ [mm]						
14	Factor for annular gap:	α _{gap} [-]						
Sa	I fety in case of fire (BWR 2)							
15	Reaction to fire:	Class						
Re	Resistance to fire:							
16	Fire resistance to steel failure (tension load):	N _{Rk,s,fi} [kN]						
17	Fire resistance to pull-out failure (tension load):	N _{Rk,p,fi} [kN]						
18	Fire resistance to steel failure (shear load):	$V_{Rk,s,fi}[kN], M^0_{Rk,s,fi}[Nm]$						
Du	I rability:							
19	Durability:	Description/Level						
	1							

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product

fischer FAZ II Classic anchor is a torque-controlled expansion anchor consisting of four sizes: M8, M10, M12 and M16. The fasteners are made of: Galvanised steel (FAZ II Classic) or stainless steel (FAZ II Classic R).

The single parts are given in the Figure 1. The materials and dimensions of the anchors are summarised in: Table A4.1, annex A4 and table A3.1, annex A3, respectively.

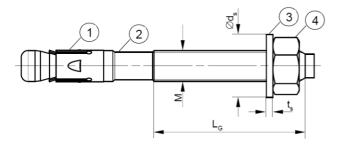


Figure 1: Technical drawing of the fischer FAZ II Classic anchor.

The characteristic material values, dimensions and tolerances of the anchors not indicated in Annexes shall correspond to the respective values laid down in the technical documentation of this European Technical Assessment.

2 Specification of the intended use in accordance with the applicable European Assessment Document (hereinafter EAD)

The anchors are intended to be used with embedment depth given in Annex B2, Table B2.1. The intended use specifications of the product are detailed in Annex B1.

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annexes.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the anchor of 50 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

Characteristic	Assessment of characteristic			
3.1 Mechanical resistance and stability (BWR 1)				
Resistance to steel failure	See annex C1			
$N_{Rk,s}[kN]$	See annex C1			
Resistance to pull-out failure	See annex C1			
$N_{Rk,p}[kN]$ ψc	See annex C1			
Resistance to concrete cone failure				
$k_{cr,N}$				
$k_{ucr,N}$	See annex C1			
$h_{\rm ef}$				
c _{cr,N} [mm] Robustness				
γ _{inst}	See annex C1			
Mininum edge distance and spacing				
c_{\min}	See annexes C4 & C5			
S_{\min}	See annexes C4 & C3			
h _{min} [mm]				
Edge distance to prevent splitting under load N ⁰ _{Rk,sp} [kN]	See annex C1			
	estic leading)			
Characteristic resistance to shear load (static and quasi-st	atic toading)			
Resistance to steel failure under shear load $V^{0}_{Rk,s}$ [kN]				
M ⁰ _{Rk,s} [Nm]	See annex C2			
k ₇				
Resistance to pry-out failure	See annex C2			
k_8	See annex C2			
Characteristic resistance for simplified design				
F_{Rk} [kN]				
$M^0_{RK,s}$ [Nm]				
c_{cr}	See annex C1, C2 & C5			
S _{cr}				
h _{min} [mm]				
Displacements				
Displacements under static and quasi-static loading				
$\delta_{ m N0} \ \delta_{ m N}$				
$\delta_{ m v0} = \delta_{ m v0}$	See annex C8			
$\delta_{ m v}$				

Characteristic

Assessment of characteristic

Characteristic resistance and displacements for seismic performance categories C1 and C2

Resistance to tension load, displacements

C1

 $N_{Rk,s,C1}$ See annex C1

 $N_{Rk,p,C1} \; [kN]$

C2

 $N_{Rk,s,C2}$ See annex C7 and C8

 $N_{RK,p,C2}$ [kN]

Resistance to shear load, displacements

C1

 $V_{Rk,s,C1}[kN]$ See annex C6

C2

 $V_{Rk,s,C2}$ [kN] See annex C7 and C8

 $_{\delta v,C2}\,[mm]$

Factor for annular gap

See annex C6

 α_{gap}

3.2 Safety in case of fire (BWR2)

Fire resistance to steel failure (tension load)

 $N_{Rk,sfl}$ [kN] See annex C3

Fire resistance to pull-out failure (tension lad)

 $N_{Rk,p,fl}$ [kN]

See annex C3

Fire resistance to steel failure (shear load)

 $V_{Rk,s,fl}$ [kN] See annex C3

 $M^{0}_{Rk,s,fl}$ [Nm]

Aspects of durability

Durability No performance assessed

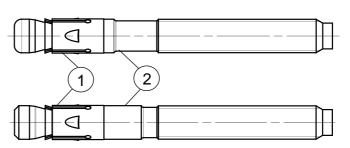
See additional information in section 3.3 and 3.4

3.3 Methods of assessment

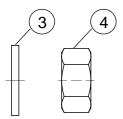
The assessment of the performance of fischer Bolt Anchor FAZ II Classic in relation to the applicable BWR's has been made in accordance with the European Assessment Document (EAD) No. EAD 330232-01-0601; Mechanical fasteners for use in concrete.

3.4 General aspects related to the fitness for use of the product.

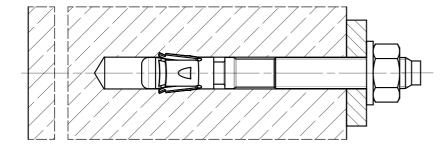
The European Technical Assessment is issued for the fischer Bolt Anchor FAZ II Classic based on agreed data/information, deposited with ETA-Danmark, which identifies the product that has been assessed. Changes to the product or production process, which could result in this deposited data/information being incorrect, should be notified to ETA-Danmark before the changes are introduced. ETA-Danmark will decide if such changes affect the ETA and consequently the validity of the CE marking based on the ETA and if so whether further assessment or alterations to the ETA, shall be necessary.


The bolt anchors are manufactured in accordance with the provisions of the European Technical Assessment using the automated manufacturing process as identified during the inspection of the plant by the assessment body issuing the ETA and the notified body and laid down in the technical documentation.

4 Assessment and verification of constancy of performance (hereinafter AVCP) system applied, with reference to its legal base

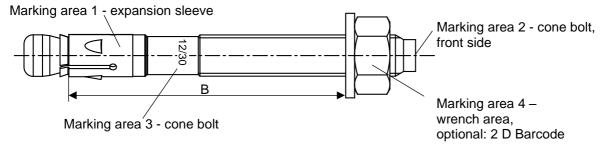

4.1 AVCP system

According to the decision 1996/582/EC of the European Commission, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No. 305/2011) is 1.


Cone bolt manufactured by cold - forming:

Cone bolt manufactured by turning:

- 1 Expansion sleeve
- 2 Cone bolt (cold formed or turned)
- 3 Washer
- 4 Hexagon nut


(Figure not to scale)

fischer Bolt Anchor FAZ II Classic, FAZ II Classic R

Product description
Installed condition

Annex A1
Appendix 6 / 21

Product marking and letter-code:

Product marking, example: FAZ II Classic 12/30 R

Brand | type of fastener placed at marking area 1 or 3

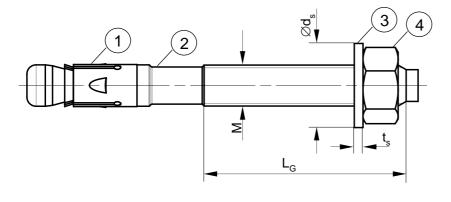
Thread size / max. thickness of the fixture $(t_{\rm fix})$ identification R placed at marking area 1 or 3

FAZ II Classic: carbon steel, galvanised

FAZ II Classic R: stainless steel

Table A2.1: Letter - code at marking area 2

Marking		(a)	(b)	(c)	(d)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(K)
Max. t _{fix} [m	nm]	5	10	15	20	5	10	15	20	25	30	35	40	45	50
	M8	40	45		-	50	55	60	65	70	75	80	85	90	95
D > [mm]	M10	45	50	55	60	65	70	75	80	85	90	95	100	105	110
B ≥ [mm]	M12	55	60	65	70	75	80	85	90	95	100	105	110	115	120
	M16	70	75	80	85	90	95	100	105	110	115	120	125	130	135
Marking		(L)	(M)	(N)	(O)	(P)	(R)	(S)	(T)	(U)	(V)	(W)	(X)	(Y)	(Z)
Max. t _{fix} [m	nm]	60	70	80	90	100	120	140	160	180	200	250	300	350	400
	M8	105	115	125	135	145	165	185	205	225	245	295	345	395	445
D > [mm]	M10	120	130	140	150	160	180	200	220	240	260	310	360	410	460
B ≥ [mm]	M12	130	140	150	160	170	190	210	230	250	270	320	370	420	470
	M16	145	155	165	175	185	205	225	245	265	285	335	385	435	485


Calculation existing her for installed fasteners:

existing $h_{ef} = B_{(according to table A2.1)} - existing t_{fix}$

Thickness of the fixture t_{fix} including thickness of filling conical washer t and e.g. thickness of grout layer t_{grout} or other non-structural layers

fischer Bolt Anchor FAZ II Classic, FAZ II Classic R	
Product description	Annex A2
Product marking and letter code	Appendix 7 / 21

Product dimensions

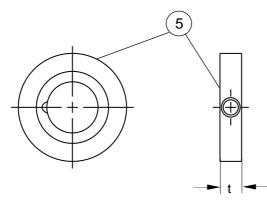


Table A3.1: Dimensions [mm]

Dort	Designation			FAZ II Classic, FAZ II Classic R					
Part				M8	M10	M12	M16		
1	Expansion sleeve	Sheet thickness		1,3	1,4	1,6	2,4		
2	Cone bolt	Thread siz	ze M	8	10	12	16		
		L _G		19	26	31	40		
3	Washer	ts	≥	1,4	1,8	2,3	2,7		
3		\emptyset ds		15	19	23	29		
4	Hexagon nut	Wrench si	ze	13	17	19	24		
5	fischer filling conical washer FFD	t	Ш		6		7		

fischer Bolt Anchor FAZ II Classic, FAZ II Classic R	
Product description	Annex A3
Dimensions	Appendix 8 / 21

Dort	Decimation	Material					
Part	Designation	FAZ II Classic	FAZ II Classic R				
		Steel	Stainless steel R				
Steel grade		Zinc plated ≥ 5 µm, ISO 4042:2018	Acc. to EN 10088:2014 Corrosion resistance class CRC III acc. to EN 1993-1-4:2006+A1:2015				
1	Expansion sleeve	Cold strip, EN 10139:2016 or stainless steel EN 10088:2014	Stainless steel EN 10088:2014				
2	Cone bolt	Cold form steel or free cutting steel	Stainless steel				
3	Washer	Cold strip, EN 10139:2016	EN 10088:2014				
4 Hexagon nut		Steel, property class min. 8, EN ISO 898-2:2012	Stainless steel ISO 3506-2:2020; property class – min. 70				
5	fischer filling conical washer FFD	Cold form steel or free cutting steel	Stainless steel EN 10088:2014				

fischer Bolt Anchor FAZ II Classic, FAZ II Classic R	
Product description	Annex A4
Materials	Appendix 9 / 21

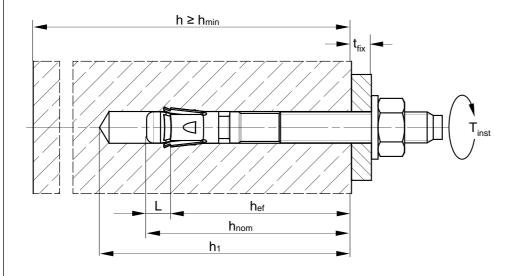
Specifications of intended use Fastenings subject to: FAZ II Classic, FAZ II Classic R Size **M8** M10 M12 M16 Hammer drilling with standard drill bit Hammer drilling with hollow drill bit with automatic cleaning Diamond drilling √ (for non seismic applications only) Static and quasi-static loads Cracked and uncracked concrete Fire exposure C1 Seismic performance C2 _1) category

Base materials:

- Compacted reinforced and unreinforced normal weight concrete without fibres (cracked or uncracked) according to EN 206:2013+A2:2021
- Strength classes C20/25 to C50/60 according to EN 206:2013+A2:2021

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (FAZ II Classic, FAZ II Classic R)
- For all other conditions according to EN 1993-1-4:2006 + A1:2015 corresponding to corrosion resistance class
 - CRC III: for FAZ II Classic R


Design:

- Fastenings are to be designed under the responsibility of an engineer experienced in fastenings and concrete work
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The
 position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to
 reinforcement or to supports, etc.)
- · Fastenings in stand-off installation or with a grout layer under seismic action are not covered
- In case of seismic applications the fastener shall be positioned outside of critical regions (e.g. plastic hinges)
 of the concrete structure
- Design of fastenings according to EN 1992-4:2018 and EOTA Technical Report TR 055:2018

fischer Bolt Anchor FAZ II Classic, FAZ II Classic R	
Intended Use	Annex B1
Specifications	Appendix 10 / 21

¹⁾ No performance assessed

0			FAZ II Classic, FAZ II Classic R					
Size		•	М8	M10	M12	M16		
Nominal drill hole diameter	$d_0 =$		8	10	12	16		
Maximum bit diameter with hammer or hollow drilling	d	[mm]	8,45	10,45	12,5	16,5		
Maximum bit diameter with diamond drilling	d _{cut,max}		8,15	10,45	12,25	16,45		
Effective embedment depth	h _{ef} ≥		35-90	40-100	50-125	65-160		
Length from hef to end of cone bolt	L		9,5	11,5	13,5	17,5		
Overall fastener embedment depth in the concrete	h _{nom} ≥	[mm]	N _{ef} + L					
Depth of drill hole to deepest point	h₁ ≥	•			h _{nom} + 5			
Diameter of clearance hole in the fixture	$d_{f}\leq$	[mm]	9	12	14	18		
Required setting torque	T _{inst} =	[Nm]	20	45	60	110		

h_{ef} = Effective embedment depth

 t_{fix} = Thickness of the fixture h_1 = Depth of drill hole to deepest point

h = Depth of drill note to deepest point

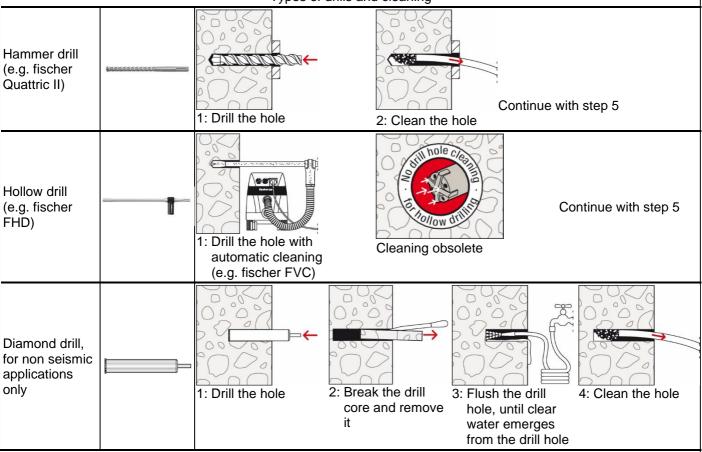
h = Thickness of the concrete member

h_{min} = Minimum thickness of concrete member

 h_{nom} = Overall fastener embedment depth in the concrete

T_{inst} = Required setting torque

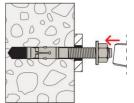
L = Length from h_{ef} to end of cone bolt

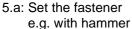

fischer Bolt Anchor FAZ II Classic, FAZ II Classic R	
Intended Use	Annex B2
Installation parameters	Appendix 11 / 21

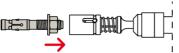
Installation instructions:

- Fastener installation carried out by appropriately qualified personnel according to the design drawings and under the supervision of the person responsible for technical matters on the site
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener
- Hammer, hollow or diamond drilling according to Annex B1 + B2
- Drill hole created perpendicular +/- 5° to concrete surface, positioning without damaging the reinforcement
- In case of aborted hole: new drilling at a minimum distance twice the depth of the aborted drill hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application
- For Seismic C2 applications with shear loads, the annular gap must be filled

Installation instructions: Drilling and cleaning the hole


Types of drills and cleaning



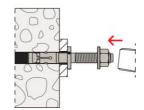

fischer Bolt Anchor FAZ II Classic, FAZ II Classic R	
Intended Use	Annex B3
Installation instructions	Appendix 12 / 21

Installation instructions: Installation of the fastener

HEXAGON NUT:

5.b: Set the fastener e.g. fischer FA-ST II




7: Installed fastener

fischer Filling conical washer FFD for seismic application or minimising the annular gap:

The gap between bolt and fixture may be filled with mortar (compressive strength \geq 50 N/mm² e.g. fischer FIS SB) after last step (for eliminating the annular gap). The FFD is additional to the standard washer. The thickness of the FFD must be considered for definition of $t_{\rm fix}$. Countersunk of the FFD in direction to the anchor plate. Installation with hexagon nut is permitted.

For seismic C2 applications, with shear loads, the annular gap must be filled. This application is not permitted without annular gap filling.

fischer Bolt Anchor FAZ II Classic, FAZ II Classic R

Table C1.1: Ch	aracteris	tic values	of tens	ion resi	stance u	ınder static ar	nd quasi-stat	tic action		
Size					FAZ II Classic, FAZ II Classic R					
					18	M10	M12	M16		
Steel failure										
Characteristic resistance	FAZ II Cla FAZ II Cla		,s [kN]		6,5 6,5	27,2 27,2	41,6 41.6	66,2 66,2		
	FAZ II Clas	sic		10),U	•	41,0	00,2		
	AZ II Clas		1) [-]			1,5				
Pullout failure										
Effective embedment calculation	·	h _{ef}	[mm]	40 ³⁾ - < 45	45-90	40-100	50-125	65-160		
Characteristic resista cracked concrete C2	0/25	$N_{Rk,p}$	[kN]	5,5	8	13	20	27,0		
Characteristic resista uncracked concrete ((C20/25)	[KIV]	1	4	20	22	38,6		
		-	C25/30		1,12					
Increasing factor ψc f	Increasing factor ψc for		C30/37	1,22						
cracked or uncracked	t	[-] - -	C35/45	1,32 1,41 1,50						
concrete			C40/50							
$N_{Rk,p} = \psi_c \cdot N_{Rk,p} (C20)$)/25)		C45/55							
			C50/60	1,58						
Installation sensitivity	factor	γinst	[-]	1,0						
Concrete cone and	<u> </u>	ailure								
Factor for uncracked		k ucr,N	[-]			11,0 ²				
Factor for cracked co		k cr,N	[]			7,72)				
Characteristic spacin	<u> </u>	Scr,N	[mm]			3 · h _e				
Characteristic edge of		Ccr,N	[]	1,5 · h _{ef}						
Characteristic spacin for splitting failure	g	Scr,sp	[mm]			2 · c _{cr,}	sp			
	≥ 80	_		2,4	··h _{ef}	2·h _{ef}		-		
Ohanaatanistis seles	≥ 100					2,4·h _{ef}	2·h _{ef}	_ 5)		
Characteristic edge distance	≥ 120	- 6	[mm]				2,1·h _{ef}			
for splitting failure h	≥ 140	Ccr,sp	נוווווון	2.	h _{ef}	1,9·h _{ef}				
io. opiitalig lallato II	≥ 160					I ,ອ llef	1,5⋅h _{ef}	2·h _{ef}		
	≥ 200									
Characteristic resista splitting	nce to	N^0 Rk,sp	[kN]			min {N ⁰ _{Rk,c} ;	N _{Rk,p} } ⁴⁾			

¹⁾ In absence of other national regulations

fischer Bolt Anchor FAZ II Classic, FAZ II Classic R	
Performances	Annex C1
Characteristic values of tension resistance under static and quasi-static action	Appendix 14 / 21

 ²⁾ Based on concrete strength as cylinder strength
 ³⁾ For dry internal exposure and statically indeterminate redundant components, the minimum effective embedment depth can be reduced to 35 mm without reduction of $N_{Rk,p}$. $^{4)}$ $N^{0}_{Rk,c}$ according to EN 1992-4:2018

⁵⁾ No performance assessed

Table C2.1: Chara	cteristic values of s	hear resistan	ice under s	static and qu	ıasi-static a	ection
Cina		FAZ II Classic, FAZ II Classic R				
Size		M8	M10	M12	M16	
Steel failure without leve	er arm				•	
Characteristic FAZ II Cla	assic	$V^0_{Rk,s}$ [kN]	14,1	22,9	32,4	59,8
FAZ II Cla	ssic R		14,4	19,2	38,7	64,6
Partial factor for steel failu	ıre	γ _{Ms} 1)		1,	25	
Factor for ductility				1	,0	
Steel failure with lever a	rm and Concrete pryd	out failure				
Effective embedment dep	th for calculation	h _{ef} [mm]	45-90	60-100	70-125	85-160
Characteristic bending resistance	FAZ II Classic, FAZ II Classic R	M ⁰ _{Rk,s} [Nm]	27	54	93	241
Factor for pryout failure		k ₈ [-]	2,8	3,2		
Effective embedment dep	th for calculation	h _{ef} [mm]	40 ²⁾ - < 45	40 - < 60	50 - < 70	65 - < 85
Characteristic bending	FAZ II Classic	- N40 FN11	20	51	93	241
resistance	FAZ II Classic R	$ M^0_{Rk,s}$ [Nm]	20	51	93	241
Factor for pryout failure		k ₈ [-]	2,5	2,6	3,1	3,2
Partial factor for steel failu	ıre	γ _{Ms} 1)		1,	25	
Factor for ductility	k ₇ [-]	1,0				
Concrete edge failure						
Effective embedment dep	th for calculation			ŀ	l ef	
Outside diameter of a fast	tener	d _{nom} [[[[[[]]]	8	10	12	16

¹⁾ In absence of other national regulations

fischer Bolt Anchor FAZ II Classic, FAZ II Classic R	
Performances Characteristic values of characteristance under static and quasi static action	Annex C2
Characteristic values of shear resistance under static and quasi-static action	Appendix 15 / 21

 $^{^{2)}}$ For dry internal exposure and statically indeterminate redundant components, the minimum effective embedment depth can be reduced to 35 mm without reduction of $N_{\text{Rk,p}}.$

C:					FAZ II C	lassic, F	XZ II Cla	ssic R		
Size	M8		M10		M12		M16			
		h _{ef} ≥ [mm]	35	45	40	60	50	70	65	85
		R30	1,4	1	2	,8	5,	0	9,	4
Characteristic FAZ II Classic,	N.	R60	1,2	2	2	,3	4,	1	7,7	
resistance steel failure	I N Rk,s,fi	R90	0,9	0,9 1,9		3,2		6,0		
Sieer ranure		R120	0,8	3	1,6		2,8		5,2	
Characteristic resistance	N _{Rk,c,fi}	R30 - R90 [kN]	7,7 · h _{ef} ^{1,5} · (20) ^{0,5} · h _{ef} / 200 / 1000							
Concrete cone failure		R120		7,7 · h _{ef} ^{1,5} · (20) ^{0,5} · h _{ef} / 200 / 1000 · 0,8					,8	
Characteristic resistance pullout failure	N _{Rk,p,fi}	R30 R60 R90	1,3	3	2	,3	3,2	4,0	4,7	7,1
		R120	1,0)	1	,8	2,5	3,2	3,8	5,6

Table C3.2: Characteristic values of shear resistance under fire exposure

				R3	30	R60		
FAZ II Classic, FAZ II Classic R			$V_{Rk,s,fi,30} \ [kN]$	M ⁰ _{Rk,s,fi,30} [Nm]	$V_{Rk,s,fi,60} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	M ⁰ _{Rk,s,fi,60} [Nm]		
M8		35		1,8	1,4	1,6	1,2	
M10	h _{ef} ≥	40	[mm]	3,6	3,6	2,9	3,0	
M12	i i ei =	50	[]	6,3	7,8	4,9	6,4	
M16	·	65		11,7	19,9	9,1	16,3	
				, .	, -	-,-	, .	
				R			120	
FAZ II Class	ic, FAZ I			,				
FAZ II Class	ic, FAZ I			V _{Rk,s,fi,90}	M ⁰ Rk,s,fi,90	V _{Rk,s,fi,120}	120 M ⁰ Rk,s,fi,120	
		l Classic R	[mm]	RS V _{Rk,s,fi,90} [kN]	M ⁰ Rk,s,fi,90 [Nm]	R 1 V _{Rk,s,fi,120} [kN]	M ⁰ Rk,s,fi,120 [Nm]	
M8	ic, FAZ l	I Classic R	[mm]	R9 V _{Rk,s,fi,90} [kN] 1,3	M ⁰ Rk,s,fi,90 [Nm]	R1 V _{Rk,s,fi,120} [kN] 1,2	M ⁰ _{Rk,s,fi,120} [Nm] 0,8	

Concrete pryout failure according to EN 1992-4:2018

Table C3.3: Minimum spacings and minimum edge distances of fasteners under **fire exposure** for **tension** and **shear** load

Size			FAZ II Classic, FAZ II Classic R							
			М8	M8 M10 M12						
Spacing	Smin			Annex C4						
Edge distance	Cmin	[mm]	$c_{min} = 2 \cdot h_{ef}$, for fire exposure from more than one side $c_{min} \ge 300$ mm							

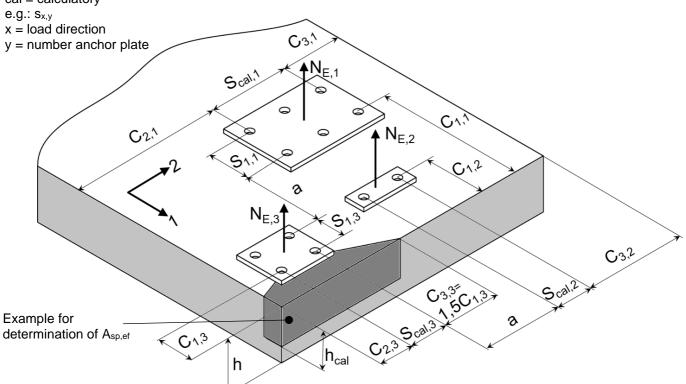
fischer Bolt Anchor FAZ II Classic, FAZ II Classic R	
Performances	Annex C3
Characteristic values of resistance under fire exposure	Appendix 16 / 21

Table C4.1: Minimum thickness of concrete members, minimum spacing and minimum edge distance

0: -				FAZ II Classic,	FAZ II Classic R		
Size		-	M8	M10	M12	M16	
Minimum edge distance							
Uncracked concrete	C _{min}		40	45	55	65	
Cracked concrete	Cmin		40	43	33	00	
Corresponding	S	[mm]		according	to Annex C5		
Minimum thickness of concrete member	h _{min}	[]	8	30	100	140	
Thickness of concrete member	h≥			max. {h _m	in; 1,5 · h _{ef} }		
Minimum spacing							
Uncracked concrete			40	40	50	65	
Cracked concrete	Smin		35	40	50	05	
Corresponding	С	[mm]		according to Annex C5			
Minimum thickness of concrete member	h _{min}	[]	80		100	140	
Thickness of concrete member	h≥	Ī		max. {h _m	_{lin} ; 1,5 ⋅ h _{ef} }		
Minimum splitting area							
Uncracked concrete	۸	[·1000	18	37	54	67	
Cracked concrete	A _{sp,req}	mm²]	12	27	40	50	

Table C4.2: Minimum spacing and minimum edge distances - calculated values for **for** cracked concrete with one edge $(c_2 \text{ and } c_3 \ge 1,5 \text{ } c_1)$

Type of anchor / size		FAZ II Classic, FAZ II Classic R								
Type of afficion	/ 5126	M8		M	M10		M12		6	
Effective anchorage depth	$h_{\text{ef}} \geq [mm]$	35	45	40	60	50	70	65	85	
Minimum thickness of concrete member	h≥ [mm]	80	85	80	120	100	140	140	180	
Minimum spacing	s _{min} [mm]	3	35	4	-0	5	0	65	5	
Willimum spacing	for $c \ge [mm]$	4	0	100	65	120	80	100	75	
Minimum adaa diatanaa	c _{min} [mm]	4	0	60	45	70	55	65	5	
Minimum edge distance	for $s \ge [mm]$	3	35	160	90	190	125	165	85	


fischer Bolt Anchor FAZ II Classic, FAZ II Classic R	
Performances	Annex C4
Minimum thickness of member, minimum spacing and edge distances	Appendix 17 / 21

Determination of Asp,ef for each existing free edge

Splitting failure applied for minimum edge distance and spacing in depending on hef

Definition Index:

cal = calculatory

Example for different anchor plates: For considering all free edges the direction 1 and 2 must be swaped.

General formulation for each free edge: $A_{sp,ef} = (c_2 + s_{cal} + c_3) \cdot h_{cal} \ge (^n/_2) \cdot A_{sp,req}$ with:

Edge distance c_1 : $c_{min} \le c_1$

Edge distance c_2 : $c_{min} \le c_2 \le 1,5 \cdot c_1$

Edge distance c_3 : $c_{min} \le c_3 \le 1.5 \cdot c_1$

Calculation spacing, distance between outer anchors s_{cal} : $s_{min} \le s_{cal} \le 3,0 \cdot c_1$

Distance between group of anchors a: For $a \ge 3.0$ c₁ no influence between the anchor groups is taken into account.

Number of anchors n of an anchor plate as well close and parallel to the edge

Effective member thickness h_{cal} : $h_{min} \le h$; $h_{cal} \le h$; $h_{cal} \le (h_{ef} + 1.5 \cdot c_1)$

c₁, c₂, c₃, h and s_{cal} have to be set in way that the requirement is fullfiled

For the calculation of minimum spacing and minimum edge distance of fasteners in combination with different embedment depths and thicknesses of concrete members the following equation shall be fulfilled:

$$A_{sp,reg} < A_{sp,ef}$$

A_{sp,req} = required splitting area (according to Annex C 4)

 $A_{sp,ef}$ = effective splitting area

fischer Bolt Anchor FAZ II Classic, FAZ II Classic R	
Performances	Annex C5
Minimum thickness of member, minimum spacings and edge distances	Appendix 18 / 21

Table C6.1: Characteristic values of tension	and shear resistance under seismic action
category C1	

Size			FAZ II Classic, FAZ II Classic R						
			M	8	M10	M12	M16		
Effective embedment depth	h _{ef}	[mm]	40-45	45-90	40-100	50-125	85-160		
With filling of the annular gap	- α _{gap} [-]		. [1	r 1			1,0	0	
Without filling of the annular gap					0,	5			

Steel failure $N_{Rk,s,C1} = N_{Rk,s}$; $\gamma_{Ms,C1} = \gamma_{Ms}$ (see Annex C1)

Pullout failure							
Characteristic resistance in cracked concrete C1	$N_{Rk,p,C1}$	[kN]	5,1	7,4	11,6	20,0	27,0
Installation sensitivity factor	γinst	[-]	1,0				

Concrete cone failure and splitting failure $N_{Rk,c,C1} = N_{Rk,c}$; $N_{Rk,sp,C1} = N_{Rk,sp}$ (see Annex C1)

Steel failure without lever arm

	FAZ II Classic, FAZ II Classic R						
Characteristic resistance C1	h _{ef} [mm]	45-90	40-100	50-125	65-160		
Tesistance C1	V _{Rk,s,C1} [kN]	11	17	27	47		
Partial factor for steel failure	γMs,C1 ¹⁾ [-]	1,25					

¹⁾In absence of other national regulations

fischer Bolt Anchor FAZ II Classic, FAZ II Classic R

Performances

Characteristic values of tension and shear resistance under seismic action

Annex C6

Appendix 19 / 21

Table C7.1: Characteristic values of tension and shear resistance under seismic action category C2

Ci-a		FAZ II Classic, FAZ II Classic R				
Size		М8	M10	M12	M16	
Steel failure					-	
Characteristic resistance tension load C2	N _{Rk,s,C2} [kN]	_3)	27	41	66	
Partial factor for steel failure	γ _{Ms,C2} 1) [-]	- 0)		1,5		
Pullout failure						
	h _{ef} [mm]		60	70	85	
Characteristic resistance tension load in	$N_{Rk,p,C2}$ [kN]	_3)	5,1	7,4	21,5	
cracked concrete C2	h _{ef} [mm]	- 0)	40-59	50-69	65-84	
	N _{Rk,p,C2} [kN]		2,7	4,4	16,4	
Installation sensitivity factor	γinst [-]	1,0				

Concrete cone failture and splitting failure N_{rk,c,C2}=N_{Rk,c}; N_{Rk,sp,C2}=N_{Rk,sp} (see Annex C1)

Steel failure without lever arm								
Characteristic resistance shear load C2	hef	[mm]		60	70	85		
	$V_{Rk,s,C2}^{2)}$	[kN]	_3)	10,0	17,4	27,5		
	h _{ef}	[mm]	_3)	40-59	50-69	65-84		
	V _{Rk,s,C2} ²⁾	[kN]		7,0	12,7	22,0		
Partial factor for steel failure	γMs,C2 ¹⁾	[-]	1,25					

¹⁾ In absence of other national regulations

fischer Bolt Anchor FAZ II Classic, FAZ II Classic R	
Performances Characteristic values of tension and shear resistance under seismic action	Annex C7
Characteristic values of terision and shear resistance under seismic action	Appendix 20 / 21

²⁾ Filling of the annular gap according to Annex B4 required

³⁾No performance assessed

Table C8.1: Displacements under static and quasi static tension loads								
Size		FAZ II Classic, FAZ II Classic R						
		M8	M10	M12	M16			
Displacement – factor for tensile load ¹⁾								
δ _{N0} - factor			0,22	0,12	0,09	0,08		
δ _{N∞} - factor	— in cracked concrete	- [mm/kN]	0,78	0,40	0,19	0,09		
δ_{N0} - factor	in uncracked	- [IIIII/KIN]	0,07	0,05	0,0	6		
δ _{N∞} - factor	concrete		0,29	0,21	0,14	0,10		

Table C8.2: Displacements under static and quasi static shear loads

Size			M8	M10	M12	M16			
Displacement – factor for shear load ²⁾									
				FAZ II Classic, FAZ II Classic R					
δ _{V0} - factor	in cracked or	[mm/kN]	0,35	0,37	0,27	0,10			
δ _{V∞} - factor	uncracked concrete	[IIIII/KIN]	0,52	0,55	0,40	0,14			

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0}} - \text{factor} \cdot \textbf{N}$

 $\delta_{N\infty} = \delta_{N\infty}$ - factor · N

N = Action tension loading

²⁾ Calculation of effective displacement:

 $\delta v_0 = \delta v_0$ - factor · V $\delta v_\infty = \delta v_\infty$ - factor · V

V = Action shear loading

Table C8.3: Displacements under tension loads for category C2 for all embedment depths

Size			FAZ II Classic, FAZ II Classic R					
		M8	M10	M12	M16			
Displacement DLS	δN,C2(DLS)	4)	2,7	2,2	4,4			
Displacement ULS	$\delta_{N,C2\;(ULS)}$ [mm]	_1)	11,5	10,9	12,3			

Table C8.4: Displacements under shear loads for category C2 for all embedment depths

Size		FAZ II Classic, FAZ II Classic R					
		М8	M10	M12	M16		
Displacement DLS	δv,c2 (DLS)	_1)	4,1	4,7	5,5		
Displacement ULS	δν,c2 (ULS) [mm]	-1)	6,2	7,8	10,1		

¹⁾ No performance assessed

fischer Bolt Anchor FAZ II Classic, FAZ II Classic R	
Performances Displacements under tension and shear loads	Annex C8
	Appendix 21 / 21