

ΕN

DECLARATION OF PERFORMANCE

DoP 0292

for fischer Drop-in anchor EA II (Mechanical fastener for use in concrete)

1. <u>Unique identification code of the product-type:</u> **DoP 0292**

2. Intended use/es: Post-installed fastener for use in concrete for redundant non-structural systems, see

appendix, especially annexes B1-B4.

3. Manufacturer: fischerwerke GmbH & Co. KG, Klaus-Fischer-Str. 1, 72178 Waldachtal, Germany

4. Authorised representative:

5. System/s of AVCP: 2+

6. <u>European Assessment Document:</u> EAD 330747-00-0601
European Technical Assessment: ETA-07/0142; 2021-09-24

Technical Assessment Body: DIBt- Deutsches Institut für Bautechnik

Notified body/ies: 2873 TU Darmstadt

7. Declared performance/s:

Safety and accessibility in use (BWR 4)

Characteristic resistance to tension load (static and quasi-static loading):

Resistance to steel failure:

Resistance to pull- out failure:

NPD
Resistance to concrete cone failure:

NPD
NPD
NPD

Robustness: Annexes C1, C2
Minimum edge distance and spacing: Annexes B2, C2

Edge distance to prevent splitting under load: NPD

Characteristic resistance to shear load (static and quasi-static loading):

Resistance to steel failure (shear load): Annexes C1, C2 $V_{Rk,s}$ =NPD; k_7 =NPD

Resistance to pry-out failure: NPD
Resistance to concrete edge failure: NPD

Characteristic resistance for all load directions and modes of failure for simplified design:

Characteristic resistance: Annexes C1, C2

Durability:

Durability: Annexes A3, B1

Safety in case of fire (BWR 2)

Reaction to fire: Class (A1)

Resistance to fire:

Fire resistance to steel failure (tension load):

Annex C3

Fire resistance to pull-out failure (tension load):

Annex C3

Fire resistance to steel failure (shear load):

Annex C3

8. Appropriate Technical Documentation and/or Specific -

Technical Documentation:

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

 $\hbox{Dr.-Ing. Oliver Geibig, Managing Director Business Units \& Engineering}$

Tumlingen, 2021-09-30

Jürgen Grün, Managing Director Chemistry & Quality

This DoP has been prepared in different languages. In case there is a dispute on the interpretation the English version shall always prevail.

The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Fischer DATA DOP_ECs_V43.xlsm 1/1

Specific Part

1 Technical description of the product

The fischer drop-in anchor EA II is an anchor made of galvanised or stainless steel which is placed into a drilled hole and anchored by deformation-controlled expansion.

The fixture shall be anchored with a fastening screw or threaded rod according to Annex B 5.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

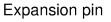
3.1 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 3

3.2 Safety and accessibility in use (BWR 4)

Essential characteristic	Performance
Characteristic resistance for all load directions and modes of failure for simplified design	See Annex C 1 and C 2
Durability	See Annex B 1

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base


In accordance with European Assessment Document EAD No. 330747-00-0601, the applicable European legal act is: [97/161/EC].

The system to be applied is: 2+

Only for use for redundant non-structural systems according to EN 1992-4:2018 With rim Expansion sleeve M8 - M12 Expansion sleeve M6 & all M..x25 EA II M6 Rimless -Expansion Expansion Optional: Safety sleeve pin Glue dot disk Intended use in concrete е Intended use in precast pre-stressed hollow concrete slabs (w/e ≤ 4,2) with a flange thickness d_b ≥ 35 mm (or 30 mm → see Annex C2) and only for $h_{ef} = 25 \text{ mm}$ (Fig. not to scale) fischer drop-in anchor EA II Annex A 1 **Product description** Installed condition Appendix 2 / 12

Anchor types

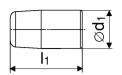



Table A2.1: Anchor size

Anchor size EA II [mm]	M6x25	M6x30	M8x25	M8x30	M8×40	M10x25	M10x30	M10x40	M12x25	M12x50	M12 D	
h _{ef}	25	30	25	30	40	25	30	40	25	50	50	
Ø d _{nom}	w.	3		10			12			15		
Ø d _{rim} (not applicable for EA II RL)	9	,5	11,5				13,5		1	6,5	17,5	
$\emptyset d_1$	Į.	5	6,5			6,5 8,5 8		8,5 8		10		
l ₁	9	14	8 13,5			9	13,5	18,5	10,5	18	3,5	

No groove for:

- EA II M6x30..
- EA II M8x30..
- EA II M10x40...
- EA II M12x50..

1 groove for:

- EA II M6x25..
- EA II M8x25..
- EA II M10x25...
- EA II M12x25...

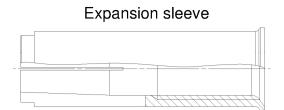
2 grooves for:

- EA II M8x40...
- EA II M10x30..

Table A2.2: Marking on anchor body

galvanise	ed steel (gvz)	stainless steel (R)					
with rim	rimless	with rim	rimless				
← EA II M6x25	← EA II M6x25 RL						
EA II M6x30	EA II M6x30 RL						
EA II M8x25	EA II M8x25 RL						
EA II M8x30	EA II M8x30 RL	✓ EA II M10x30 R	EA II M10x30 RL R				
EA II M8x40	EA II M8x40 RL	✓ EA II M10x40 R	EA II M10x40 RL R				
	EA II M10x25 RL		EA II M12x50 RL R				
	EA II M10x30 RL		EA II M12x50 RL D R				
	EA II M10x40 RL						
	EA II M12x25 RL						
EA II M12x50	EA II M12x50 RL						
	SEA II M12x50 BL D						

(Fig. not to scale)


fischer drop-in anchor EA II

Product description

Anchor types

Annex A 2

Appendix 3 / 12

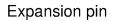


Table A3.1: Materials

	Material								
Designation	galvanised steel (≥ 5 μm)	stainless steel (R)							
Expansion sleeve	EN 10277:2018 or EN 10084:2008 or								
Expansion pin	EN 10111:2008 or EN 10263:2018 or EN 10087:1999 or ASTM A29/A29M	EN 10088:2014							
Fastening screw or threaded rod	steel, property class 4.6, 5.6, 5.8 or 8.8 according to EN ISO 898-1:2013	property class 50, 70 or 80 according EN ISO 3506:2020							

fischer drop-in anchor EA II

Product description Materials

Annex A 3

Appendix 4 / 12

Setting & drilling tools

Setting tools	Marking	Description	Marking on EA II with rim and rimless
	EHS Plus Mx h _{ef}	Manual setting tool with hand guard	
	EHS Mx h _{ef}	Manual setting tool basic format	
	EMS Mx h _{ef}	Machine setting tool with SDS Plus	No marking

Drilling tools

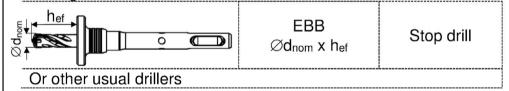
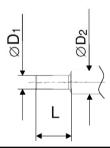



Table A4.1: Corresponding drill bits and parameters of setting tools

Manual setting tool	Machine setting tool	Stop drill	For anchor size	Ø D1 [mm]	Ø D2 [mm]	L [mm]
EHS (Plus) M6x25/30	EMS M6x25/30	EBB 8x25 EBB 8x30	EA II M6x25 EA II M6x30	4,8	9,0	17,0
EHS (Plus) M8x25/30	EMS M8x25/30	EBB 10x25 EBB 10x30	EA II M8x25 EA II M8x30	6,4	11,0	18,0
EHS (Plus) M8x40	EMS M8x40	EBB 10x40	EA II M8x40			28,0
EHS (Plus) M10x25/30	EMS M10x25/30	EBB 12x25 EBB 12x30	EA II M10x25 EA II M10x30	7,9	13,0	18,0
EHS (Plus) M10x40	EMS M10x40	EBB 12x40	EA II M10x40			24,0
EHS (Plus) M12x25	EMS M12x25	EBB 15x25	EA II M12x25	10,2	16,5	15,2
EHS (Plus) M12x50	EMS M12x50	EBB 15x50	EA II M12x50	10.0	16.5	30,0
EHS (Plus) M12x50	EMS M12x50	EBB 16x50	EA II M12x50 D	10,2	16,5	30,0

fischer drop-in anchor EA II	
Intended Use	Annex A 4
Setting & Drilling tools	Appendix 5 / 12

Specifications of intended use Anchorages subject to: fischer drop-in anchor EA II (all versions) M6 M8 M₁₀ M12 Hammer drilling with Lunananananan standard drill bit All types Hammer drilling with hollow drill bit with automatic cleaning Steel Zinc plated Material Stainless steel R Static and quasi-static loads Cracked and uncracked concrete Fire exposure in concrete C12/15 to C50/60 Fire exposure in prestressed hollow concrete slabs No performance assessed

Base materials:

- Compacted reinforced and unreinforced normal weight concrete without fibres (cracked and uncracked) according to EN 206:2013+A1:2016
- Strength classes C12/15 to C50/60 according to EN 206:2013+A1:2016
- Precast prestressed hollow concrete slabs with w/e ≤ 4,2 and strength classes C30/37 to C50/60: M6x25, M8x25, M10x25 and M12x25

Use conditions (Environmental conditions):

Structures subject to dry internal conditions:

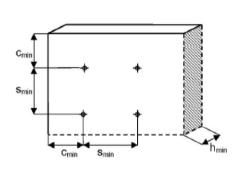
EAII, EAII R

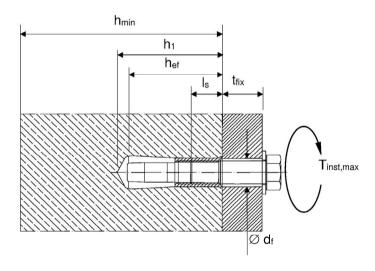
 For all other conditions according to EN 1993-1-4:2006 + A1:2015 corresponding to corrosion resistance class CRC III

EA II R with hef ≥ 30 mm

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.)
- Only for use for redundant non-structural system according to EN 1992-4:2018, Chapter 7.3. Design Method B according to EN 1992-4:2018.
- Anchorages under fire exposure are designed according to EN 1992-4:2018 Annex D


Installation:

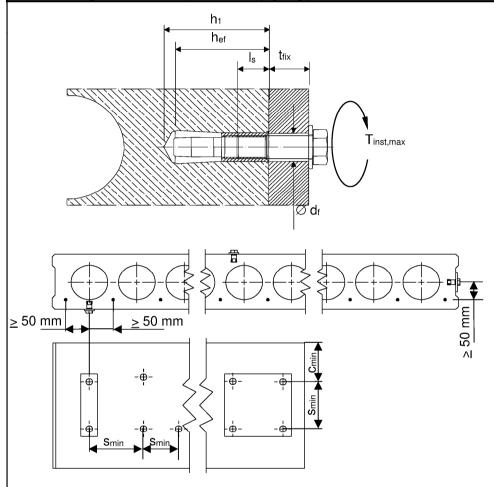

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · Create drill hole with hammer drill or with hollow drill and vacuum cleaner
- The anchor may only be used once
- In case of aborted hole: New hole must be drilled at a minimum distance of twice the depth of the aborted hole or closer, if the hole is filled with a high strength mortar (e.g. FIS EM Plus, FIS SB or FIS V Plus) and only if the hole is not in the direction of the oblique tensile or shear load
- Anchor expansion by impact using the setting tools given in Annex A 4. The anchor is properly set, if the stop of the setting tool reaches the expansion sleeve. The manual setting tool with installation control leaves a visible mark on the sleeve, as illustrated in Annex A 4 and B 4

fischer drop-in anchor EA II	
Intended Use	Annex B 1
Specifications	Appendix 6 / 12

Table B2.1: Installation parameters for co	oncrete C	12/15 to C50/6	30
Anchor size (all versions)	М6	M8	

Anchor size (all versions)			N	16		M8			M10		М	12	M12D
Nominal drill hole diameter	d ₀	[mm]	n] 8 10 12		15		16						
Effective anchorage depth	h _{ef}	[mm]	25	30	25	30	40	25	30	40	25	50	50
Maximum installation torque	T _{inst,max}	[Nm]	4	4		8			15			35	
Minimum drill hole depth	h ₁	[mm]	27	32	27	33	43	27	33	43	27	54	54
Minimum screw-in depth	I _{s,min}	[mm]	(3		8			10			12	
Maximum screw-in depth	I _{s,max}	[mm]	1	4		14		14	15	17	14		22
Clearance hole diameter	Ø d₁≤	[mm]	7 9			12			14				
h _{min} = 80 mm													
Minimum spacing	Smin	[mm]	30	70	70	110	200	80	20	00	100	-	-
Minimum edge distance	Cmin	[mm]	60	150	100	15	50	120 150		50	130	-	-
h _{min} = 100 mm													
Minimum spacing	Smin	[mm]	30	65	50	7	0	60	90	150	100		200
Minimum edge distance	Cmin	[mm]	60	115	100 115		100	160	180	110		200	
h _{min} = 120 mm													
Minimum spacing	Smin	[mm]	30	65	50	7	0	60	85	95	100		145
Minimum edge distance	Cmin	[mm]	60	115	100	1	15	100	140	150	110		200

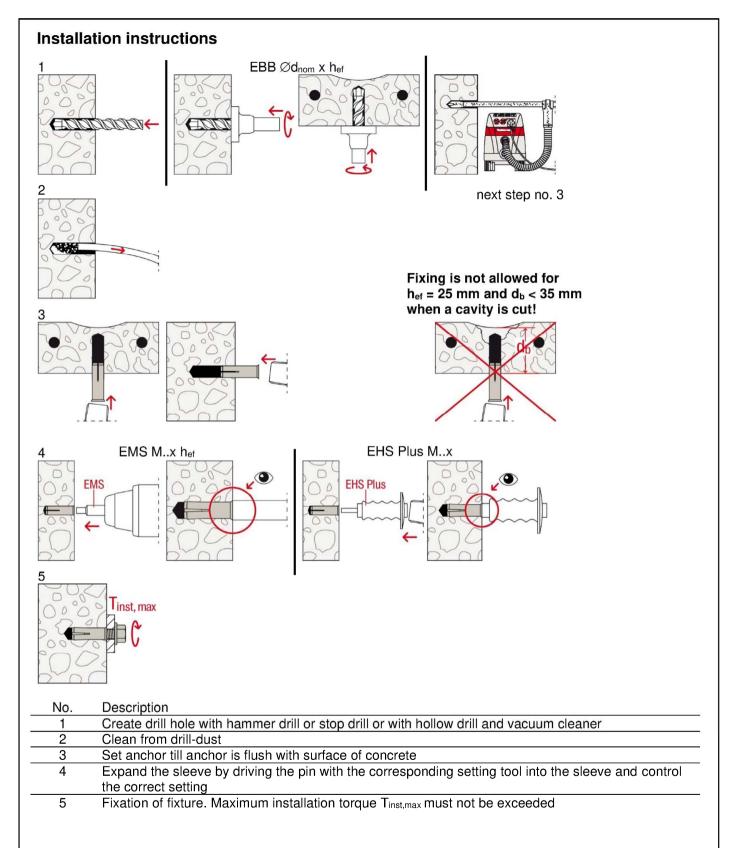
Fastening screw or threaded rod:


- Minimum property class and materials according to table A3.1
- The length of the fastening screw or threaded rod shall be determined depending on thickness of fixture t_{fix} , admissible tolerances and maximum screw-in depth $l_{\text{s,max}}$ as well as minimum screw-in depth I_{s,min.}

(Fig. not to scale)

fischer drop-in anchor EA II	
Intended Use	Annex B 2
Installation parameters	Appendix 7 / 12

Table B3.1: Installation parameters for precast pre-stressed hollow concrete slabs


Anchor size (all versions)			М6	M8	M10	M12				
Nominal drill hole diameter	d ₀	[mm]	8	10	12	15				
Effective anchorage depth	h _{ef}	[mm]	25							
Maximum installation torque	T _{inst,max}	[Nm]	4	8	15	35				
Minimum drill hole depth	h₁	[mm]	27							
Minimum screw-in depth	l _{s,min}	[mm]	6	8	10	12				
Maximum screw-in depth	l _{s,max}	[mm]		14						
Clearance hole diameter	Ø d _f	[mm]	7	7 9 12 14						
Minimum spacing	Smin = Scr	[mm]	200							
Minimum edge distance	Cmin = Ccr	[mm]	150							

Fastening screw or threaded rod:

- Minimum property class and materials according to table A3.1
- The length of the fastening screw or threaded rod shall be determined depending on thickness of fixture $t_{\rm fix}$, admissible tolerances and maximum screw-in depth $l_{\rm s,max}$ as well as minimum screw-in depth $l_{\rm s,min}$.

fischer drop-in anchor EA II	
Intended Use	Annex B 3
Installation parameters	Appendix 8 / 12

fischer drop-in anchor EA II	
Intended Use	Annex B 4
Installation instructions	Appendix 9 / 12

Table C1.1: Characte	ristic resista	ence of a fix	ing p	oint ¹⁾	for a	II load	d dire	ction	s			
Anchor size		property	N	16		M8			M10		M12/	M12D
Effective anchorage depth	h _{ef} [mm]	class of the fastening screw or threaded rod	25	30	25	30	40	25	30	40	25	50
All load directions												
Characteristic resistance	E0[IcN]]	≥ A4-50	_2)	2	_2)		2	_2)	3	5	_2)	6
C12/15	F ⁰ RK [kN]	≥ steel 4.6	1,5		2	3		3	3	5	3	0
Characteristic resistance	E0 [LN]	≥ A4-50	_2)	3	_2)		 5	_2)	5	7,5	_2)	9
C20/25 to C50/60	F ⁰ RK [kN]	≥ steel 4.6	2	3	3	3		4	3	7,5	4	9
Installation factor	γinst [-]		1,0	1,2	1,0	1	,2	1,0	,0 1,2		1,0	
Characteristic spacing	s _{cr} [mm]		75	90	75	90	120	75	90	200	75	300
Characteristic edge	c _{cr} [mm]		38	45	38	45	60	38	45	100	38	150
distance				10			00			100	00	100
Steel failure with lever ar		1	0)	_	I av	· .		I 0)				
Characteristic resistance	M ⁰ Rk,s [Nm]	A4-50	_2)	8	_2)	19		-2) 37		_2)	66	
Partial factor	γмs ³⁾ [-]	71.00					2,38					
Characteristic resistance	M ⁰ Rk,s [Nm]	A4-70	_2)	11	_2)	26 -2) 52					_2)	92
Partial factor	γms ³⁾ [-]	71170		1		1,56						
Characteristic resistance	M ⁰ _{Rk,s} [Nm]	A4-80	_2)	12	_2)	30		-2) 60			_2)	105
Partial factor	γмs ³⁾ [-]	711.00					1,33					
Characteristic resistance	M ⁰ _{Rk,s} [Nm]	steel 4.6	6	,1	15			30			52	
Partial factor	γмs ³⁾ [-]	SIGG! 4.0					1	,67				
Characteristic resistance	M ⁰ Rk,s [Nm]	steel 5.6	7	,6		19			37		66	
Partial factor	γ _{Ms} ³⁾ [-]	Sieer 5.6			1,67							
Characteristic resistance	M ⁰ _{Rk,s} [Nm]	steel 5.8	7	,6		19	_		37			66
Partial factor	γ Ms $^{3)}$ [-]	steer 5.8					1	,25				
Characteristic resistance	M ⁰ _{Rk,s} [Nm]	steel 8.8	1	2		30			60			05
Partial factor	γ Ms $^{3)}$ [-]	SIEEI 0.0					1	,25				

 ¹⁾ For definition see EN 1992-4:2018, Picture 3.4
 2) No performance assessed
 3) In absence of other national regulations

Performances

Characteristic values for tension loads in concrete according to design method B

Annex C 1

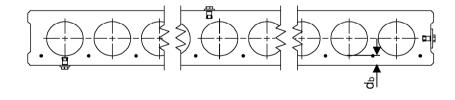

Appendix 10 / 12

Table C2.1: Characteristic values for $h_{ef} = 25$ mm in precast pre-stressed hollow concrete slabs according to design method C with C30/37 to C50/60

Anchor size		property	М6	M8	M10	M12			
Effective anchorage depth	h _{ef} [mm]	class of the fastening screw or threaded rod	25						
All Load directions			galvanised steel; with rim						
Flange thickness	d _b [mm]			≥ 35 (o	r 30 ¹⁾)				
Characteristic resistance C30/37 to C50/60	F ⁰ RK [kN]		2	3	4				
Installation factor	γinst [-]		1,0						
Characteristic spacing	$s_{cr} = s_{min} \ [mm]$		200						
Characteristic edge distance	$c_{\text{cr}} = c_{\text{min}} \ [mm]$		150						
Steel failure with lever arm									
Characteristic resistance	M ⁰ Rk,s [Nm]	steel 4.6	6,1	15	30	52			
Partial factor	γms ²⁾ [-]	Steel 4.6		1,6	57				
Characteristic resistance	M ⁰ _{Rk,s} [Nm]	ata al E C	7,6	19	37	66			
Partial factor	γ _{Ms²⁾ [-]}	steel 5.6	1,67						
Characteristic resistance	M ⁰ _{Rk,s} [Nm]	ataal E O	7,6	19	37	66			
Partial factor	γms ²⁾ [-]	steel 5.8		1,2	5				
Characteristic resistance	$M^0_{Rk,s}\left[Nm\right]$	steel 8.8	12	30	60	105			
Partial factor	γms ²⁾ [-]	Sieel 6.6		1,2	:5				

¹⁾ The anchor may be used in a flange thickness d_b of minimum 30 mm with the same characteristic resistance, but the drill hole is not allowed to cut a cavity (see Annex B 4 Point 3). The use of the fischer stop drill EBB is recommended

²⁾ In absence of other national regulations

fischer drop-in anchor EA II	
Performances	Annex C 2
Characteristic values for tension loads in hollow core slabs according to design method C with C30/37 to C50/60	Appendix 11 / 12

Table C3.1: Characteristic resistance under fire exposure³⁾ in concrete C20/25 to C50/60

fire resistance class	EA II	property class of the fastening screw or threaded rod		M6x25	M6x30	M8x25	M8x30	M8x40	M10x25	M10x30	M10x40	M12x25	M12x50/ M12x50D						
All load directions																			
R 30		F _{Rk,fi} 1) [kN]	steel	0,5	0	,6	0,9	1,3	0,6	0,9	1,8		2,3						
R 60	Characteristic		[kN]	[kN]	F _{Rk,fi} 1)	F _{Rk,fi} 1)	F _{Rk,fi} 1)	F _{Rk,fi} 1)	≥ 4.6	0	,5	0,6	0	0,9		1,5		0,6	2,3
R 90	resistance C20/25 to C50/60				or	0,4		0,6				0,9			2,0				
R 120	0_0/_0 (0 000/00		≥ A4-50 ²⁾	0	,3		0	,5		0,	6	0,5	1,3						
D 00 D 100	Characteristic spacing	s _{cr,fi} [mm]		100	120	100	120	160	100	120	160	100	000						
R 30 – R 120	Characteristic edge distance	c _{cr,fi} [mm]		50	115	50	140	140	50	140	160	50	200						

¹⁾ In absence of other national regulations, a partial factor for the resistance of $\gamma_{m,fi}$ = 1,0 under fire impact is recommended.

Table C3.2: Characteristic resistance under fire exposure³⁾ for shear load with level arm in concrete C20/25 to C50/60

fire resistance class	EA II	fas so	erty class of the stening crew or aded rod	M6x25	M6x30	M8x25	M8x30	M8x40	M10x25	M10x30	M10x40	M12x25	M12x50/ M12x50D
R 30			steel	0,65	0,5	1,30	1,7	1,7	2,4	4,4	4,4	7,1	9,5
R 60	Characteristic	M^0 RK,s,fi $^{1)}$	≥ 4.6	0,50	0,4	0,95	1,3	1,3	1,7	3,2	3,2	5,0	6,7
R 90	resistance	[Nm]	or	0,35	0,3	0,60	0,8	0,8	1,0	1,9	1,9	2,9	3,9
R 120			≥ A4-5 ²⁾	0,30	0,2	0,45	0,6	0,6	0,7	1,3	1,3	1,8	2,4

¹⁾ In absence of other national regulations, a partial factor for the resistance of $\gamma_{m,fi} = 1,0$ under fire impact is recommended.

In case of fire attack from more than one side, the edge distance shall be cfi,min ≥ 300 mm

lischer di	rop-in anchor EA II
Performand	oe.

Annex C 3

²⁾ Not for M..x25

³⁾ Not valid for precast pre-stressed hollow core slabs

²⁾ Not for M..x25

³⁾ Not valid for precast pre-stressed hollow core slabs