

LEISTUNGSERKLÄRUNG

DoP 0388

für fischer Injektionssystem FIS RC II / FIS RC II Low Speed (Mörtel für nachträgliche Bewehrungsanschlüsse)

DE

Eindeutiger Kenncode des Produkttyps:

2. Verwendungszweck(e): System für nachträglich eingemörtelte Bewehrung, siehe Anhang, insbesondere die Anhänge B1-

B11.

DoP 0388

3. Hersteller: fischerwerke GmbH & Co. KG, Klaus-Fischer-Str. 1, 72178 Waldachtal, Deutschland

4. <u>Bevollmächtigter:</u> –

5. AVCP - System/e:

6. Europäisches Bewertungsdokument: EAD 330087-01-0601 Edition 06/2021

Europäische Technische Bewertung: ETA-22/0502; 2025-09-23

Technische Bewertungsstelle: DIBt- Deutsches Institut für Bautechnik

Notifizierte Stelle(n): 2873 TU Darmstadt

Erklärte Leistung(en):

Mechanische Festigkeit und Standsicherheit (BWR 1)

Charakteristischer Widerstand unter statische und quasi-statische Lasten:

Verbundfestigkeit nachträglich eingemörtelter Bewehrungsstab: Anhänge C1, C2

Abminderungsfaktor: Anhänge C1, C2

Erhöhungsfaktor minimale Verankerungsstiefe: Anhänge C1, C2

Charakteristischer Widerstand für Stahlversagen für den Bewehrungs-Zuganker: Anhang C5

Charakteristischer Widerstand unter seismischer Beanspruchung:

Verbundfestigkeit und Abminderungsfaktor unter seismischer Beanspruchung: Anhänge C3, C4

Minimale Betondeckung bei seismischer Belastung: Anhang B5

Sicherheit im Brandfall (BWR 2)

Brandverhalten: Klasse (A1)

Feuerwiderstand:

Verbundspannung bei erhöhten Temperaturen für nachträgliche Bewehrungsstäbe bewertet für 50 Jahre: Anhang C6 Verbundspannung bei erhöhten Temperaturen für nachträgliche Bewehrungsstäbe bewertet für 100 Jahre: Anhang C6 Charakteristischer Widerstand für Stahlversagen für den Bewehrungs-Zuganker unter Brandeinwirkung: Anhang C5

 Angemessene Technische Dokumentation und/oder Spezifische Technische Dokumentation:

Die Leistung des vorstehenden Produkts entspricht der erklärten Leistung/den erklärten Leistungen. Für die Erstellung der Leistungserklärung im Einklang mit der Verordnung (EU) Nr. 305/2011 ist allein der obengenannte Hersteller verantwortlich.

Unterzeichnet für den Hersteller und im Namen des Herstellers von:

Dr. Ronald Mihala, Geschäftsführer Forschung und Entwicklung

Med

Tumlingen, 2025-10-22

Dieter Pfaff, Bereichsgeschäftsführer Internationaler Produktionsverbund und Qualitätsmanagement

Diese Leistungserklärung wurde in mehreren Sprachen erstellt. Für alle Streitigkeiten, die sich aus der Auslegung ergeben, ist die Fassung in englischer Sprache maßgeblich.

Der Anhang enthält freiwillige und ergänzende Informationen in englischer Sprache, die über die (sprachneutral festgelegten) gesetzlichen Anforderungen hinausgehen.

Fischer DATA DOP_ECs_V106 1/1

Translation guidance Essential Characteristics and Performance Parameters for Annexes

Übersetzungshilfe der Wesentlichen Merkmale und Leistungsparameter für Annexes

Иe	chanical resistance and stability (BWR 1)	
	chanische Festigkeit und Standsicherheit (BWR 1)	
	Characteristic resistance under static and quasi-static loading:	
	Charakteristischer Widerstand unter statische und quasi-statische Lasten:	
1	Bond strength of post-installed rebar:	f _{bd,PIR} [N/mm ²], f _{bd,PIR,100v} [N/mm ²]
	Verbundfestigkeit nachträglich eingemörtelter Bewehrungsstab:	ibd,PIR [14/11111], ibd,PIR,100y [14/11111]
2	Bond efficiency factor:	k _b [-], k _{b.100v} [-]
	Abminderungsfaktor:	5 t 37 5,1669 t 3
3	Amplification factor for minimum anchorage length:	α _{lb} [-], α _{lb.100v} [-]
	Erhöhungsfaktor minimale Verankerungsstiefe:	15 t 2
4	Characteristic resistance to steel failure for rebar tension anchors:	N _{Rk.s.} [kN]
	Charakteristischer Widerstand für Stahlversagen für den Bewehrungs-Zuganker:	in,s t
_	Characteristic resistance under seismic loading:	
	Charakteristischer Widerstand unter seismischer Beanspruchung:	
5	Bond strength under seismic loading, Seismic bond efficiency factor:	f _{bd,PIR,seis} [N/mm ²], k _{b,seis} [-], f _{bd,PIR,seis,100y}
	Verbundfestigkeit und Abminderungsfaktor unter seismischer Beanspruchung:	[N/mm ²], k _{b,seis,100y} [-]
		[14711111], NB,Sels,TOUY []
6	Minimum concrete cover under seismic loading:	c _{min,seis} [mm]
	Minimale Betondeckung bei seismischer Belastung:	,
Sat	fety in case of fire (BWR 2)	
Sic	cherheit im Brandfall (BWR 2)	
7	Reaction to fire:	Class
	Brandverhalten:	
	Resistance to fire:	-
	Feuerwiderstand:	
8	Bond strength at increased temperature for post-installed rebar assessed for 50 years:	$f_{bd,fj}(\theta) [N/mm^2], k_{fi}(\theta) [-], \theta_{max}[^{\circ}C]$
	Verbundspannung bei erhöhten Temperaturen für nachträgliche Bewehrungsstäbe	built / E · J/ II (/ E J/ IIIax E - J
	bewertet für 50 Jahre:	
9	Bond strength at increased temperature for post-installed rebar assessed for 100 years:	$f_{bd,fi,100y}(\theta) [N/mm^2], k_{fi,100y}(\theta) [-], \qquad \theta_{max}$
	Verbundspannung bei erhöhten Temperaturen für nachträgliche Bewehrungsstäbe	[°C]
	bewertet für 100 Jahre:	[0]
10	Characteristic resistance to steel failure for rebar tension anchors under fire exposure:	N _{Rk,s,fi} [kN]
	Charakteristischer Widerstand für Stahlversagen für den Bewehrungs-Zuganker unter	
	Brandeinwirkung:	

Besonderer Teil

1 Technische Beschreibung des Produkts

Gegenstand dieser Europäischen Technischen Bewertung ist der nachträglich eingemörtelte Anschluss von Betonstahl mit dem "Bewehrungsanschluss mit fischer Injektionssystem FIS RC II und FIS RC II Low Speed" durch Verankerung oder Übergreifungsstoß in vorhandene Konstruktionen aus Normalbeton auf der Grundlage der technischen Regeln für den Stahlbetonbau.

Für den Bewehrungsanschluss werden Betonstahl mit einem Durchmesser ϕ von 8 bis 40 mm oder der fischer Bewehrungsanker FRA oder FRA HCR in den Größen M12 bis M24 entsprechend Anhang A und Injektionsmörtel FIS RC II oder FIS RC II Low Speed verwendet. Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen dem Stahlteil, dem Injektionsmörtel und dem Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Bewehrungsanschluss entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Bewehrungsanschlusses von mindestens 50 und/oder 100 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

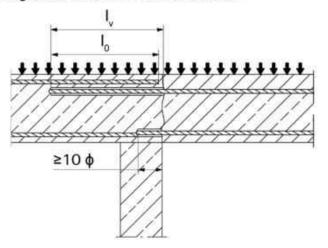
3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter statischer und quasi- statischer Beanspruchung	Siehe Anhang C 1, C 2 und C 5
Charakteristischer Widerstand unter seismischer Beanspruchung	Siehe Anhang B 5, C 3 und C 4

3.2 Brandschutz (BWR 2)

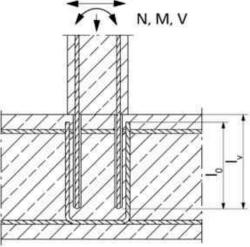
Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand	Siehe Anhang C 5 und C 6

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

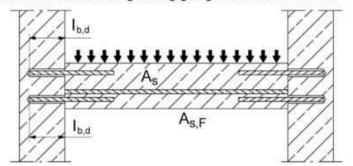

Gemäß dem Europäischen Bewertungsdokument EAD Nr. 330087-01-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

Einbauzustand und Anwendungsbeispiele Betonstahl Teil 1


Bild A1.1:

Übergreifungsstoß für Bewehrungsanschlüsse von Platten und Balken


Bild A1.2:

Übergreifungsstoß einer biegebeanspruchten Stütze oder Wand an ein Fundament. Die Bewehrungsstäbe sind zugbeansprucht.

Bild A1.3:

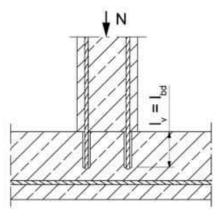
Endverankerung von Platten oder Balken, die gelenkig gelagert berechnet wurden

Abbildungen nicht maßstäblich

Bewehrungsanschluss mit fischer Injektionssystem FIS RC II und FIS RC II Low Speed

Produktbeschreibung

Einbauzustand und Anwendungsbeispiele für Betonstahl Teil 1


Anhang A1

Appendix 2 / 24

Einbauzustand und Anwendungsbeispiele Betonstahl Teil 2

Bild A2.1:

Bewehrungsanschlüsse überwiegend auf Druck beanspruchter Bauteile

Bild A2.2:

Verankerung von Bewehrung zur Deckung der Zugkraftlinie im auf Biegung beanspruchten Bauteil

(nur nachträglich eingebauter Bewehrungsstahl ist dargestellt)

Erklärungen zu den Darstellungen

- T Zugkraftlinie
- E Hüllkurve von Med / z + Ned (siehe EN 1992-1-1:2011)
- x Abstand zwischen dem theoretischen Auflagerpunkt und der Betonfuge

Bemerkung zu Bild A1.1 bis A1.3 und Bild A2.1 bis A2.2

In den Abbildungen ist keine Querbewehrung dargestellt. Die nach EN 1992-1-1:2011 erforderliche Querbewehrung muss vorhanden sein.

Die Querkraftübertragung zwischen altem und neuem Beton ist nach EN 1992-1-1:2011 zu bemessen. Vorbereitung der Fugen gemäß **Anhang B 3** aus diesem Dokument.

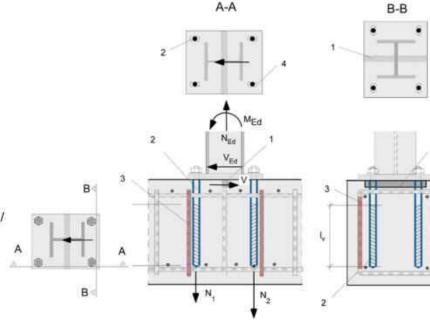
Abbildungen nicht maßstäblich

Bewehrungsanschluss mit fischer Injektionssystem FIS RC II und FIS RC II Low Speed

Produktbeschreibung

Einbauzustand und Anwendungsbeispiele für Betonstahl Teil 2

Anhang A2


Appendix 3 / 24

Einbauzustand und Anwendungsbeispiele fischer Bewehrungsanker FRA

Bild A3.1:

Übergreifungsstoß einer durch ein Biegemoment beanspruchten Stütze an ein Fundament.

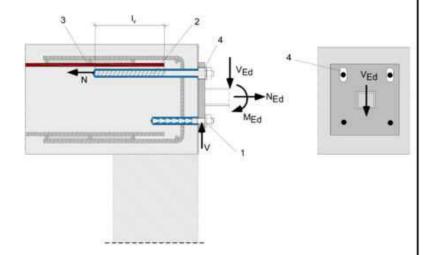

- Schubknagge (Dübel oder Schubknagge zur Querkraftübertragung)
- fischer Bewehrungsanker FRA (nur Zug)
- Vorhandene Bügelbewehrung / Bewehrung für Übergreifung
- 4. Langloch

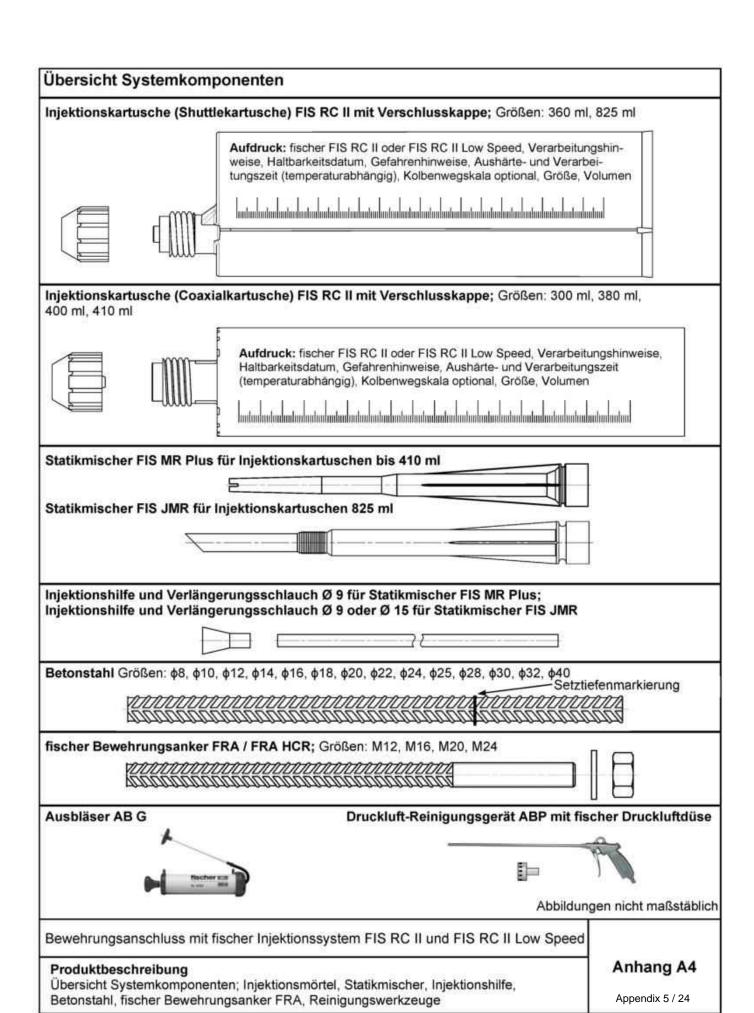
Bild A3.2:

Übergreifungsstoß für die Verankerung von Geländerpfosten oder auskragenden Bauteilen. In der Ankerplatte sind für den fischer Bewehrungsanker FRA die Bohrlöcher als Langlöcher mit Achse in Richtung der Querkraft auszuführen.

- 1. Dübel zur Querkraftübertragung
- fischer Bewehrungsanker FRA (nur Zug)
- Vorhandene Bügelbewehrung / Bewehrung für Übergreifung
- 4. Langloch

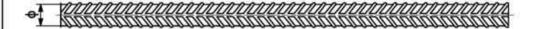
Die erforderliche Querbewehrung nach EN 1992-1-1:2011 ist in den Bildern nicht dargestellt. **Mit dem fischer Bewehrungsanker FRA dürfen nur Zugkräfte in Richtung der Stabachse übertragen werden.** Die Zugkraft muss über einen Übergreifungsstoß mit der im Bauteil vorhandenen Bewehrung weitergeleitet werden. Der Querlastabtrag ist durch geeignete zusätzliche Maßnahmen sicher zu stellen, z.B. durch Schubknaggen oder durch Dübel mit einer europäischen technischen Bewertung (ETA).

Abbildungen nicht maßstäblich


Bewehrungsanschluss mit fischer Injektionssystem FIS RC II und FIS RC II Low Speed

Produktbeschreibung

Einbauzustand und Anwendungsbeispiele für fischer Bewehrungsanker FRA


Anhang A3

Appendix 4 / 24

Eigenschaften von Betonstahl

Bild A5.1:

- Mindestwert der bezogenen Rippenfläche f_{R,min} gemäß EN 1992-1-1:2011
- Maximaler Außendurchmesser des Bewehrungsstabes gemessen über die Rippen ist:
 - Nomineller Durchmesser des Betonstahls mit Rippen: φ + 2 · h (h ≤ 0,07 · φ)
 - ο (φ: Nomineller Durchmesser des Betonstahls; hrib = Rippenhöhe)

Tabelle A5.1: Einbaubedingungen für Betonstahl

Stabnenndurchmesser		ф	8	1)	10) ¹⁾	12	21)	14	16	18	20	22	24	2	5 ¹⁾	28	30	32	40
Bohrernenndurch- messer	d ₀		10	12	12	14	14	16	18	20	25	25	30	30	30	35	35	40	40	55
Bohrlochtiefe	ho	1		$h_0 = I_V$																
Effektive Veranker- ungstiefe	lv	[mm]		Gemäß statischer Berechnung																
Mindestdicke des Betonbauteils	h _{min}			0.00	+ 3								3	l _v + 2	d ₀					

¹⁾ Beide Bohrernenndurchmesser sind möglich.

Tabelle A5.2: Werkstoffe für Betonstahl

Bezeichnung	Betonstahl
Betonstahl EN 1992-1-1:2011, Anhang C	Stäbe und Betonstahl vom Ring Klasse B oder C mit fyk und k gemäß NDP oder NCI gemäß EN 1992-1-1/NA fuk = ftk = k · fyk

Abbildungen nicht maßstäblich

Bewehrungsanschluss mit fischer Injektionssystem FIS RC II und FIS RC II Low Speed

Produktbeschreibung

Eigenschaften und Werkstoffe von Betonstahl

Anhang A5

Appendix 6 / 24

Bild A6.1: 1 2 3 4 Kopfmarkierung

Kopfmarkierung z.B.: FRA (für nichtrostenden Stahl)

FRA HCR (für hochkorrosionsbeständigen Stahl)

Tabelle A6.1: Einbaubedingungen für fischer Bewehrungsankern FRA

Gewindedurchmesser			M1	22)	M16	M20	M24 ²⁾		
Nenndurchmesser	ф	[mm]	1	2	16	20	2	25	
Bohrernenndurchmesser	do	[mm]	14	16	20	25	30	35	
Bohrlochtiefe (h ₀ = l _{e,ges})	le,ges	[mm]			l _v	+ le	-		
Effektive Verankerungstiefe	lý.	[mm]		G	emäß statisc	her Berechnu	ng		
Abstand Bauteiloberfläche zur Schweissstelle	le	[mm]	100						
Maximales Durchgangsloch	Vorsteck d _f	[mm]	1	4	18	22	2	26	
im Anbauteil ¹⁾	Durchsteck de	[mm]	16	18	22	26	32	40	
Minimale Bauteildicke	h _{min}	[mm]	h ₀ +	30		h ₀ + 2d ₀			
Maximales Montagedrehmoment	max T _{inst}	[Nm]	5	0	100	150	1	50	

¹⁾ Größere Durchgangslöcher im Anbauteil siehe EN 1992-4:2018.

Tabelle A6.2: Werkstoffe für fischer Bewehrungsankern FRA

Teil	Bezeichnung	Wer	kstoffe
	The state of the s	FRA Korrosionsbeständigkeitsklasse CRC III nach EN 1993-1-4: 2006+A1:2015	FRA HCR Korrosionsbeständigkeitsklasse CRC V nach EN 1993-1-4: 2006+A1:2015
1	Betonstahl	Stäbe und Betonstahl vom Ring Klasse B od gemäß EN 1992-1-1:NA; fuk = ftk = k · fyk; (fyk	
2	Gewindestahl mit Teil- oder Vollgewinde	Nichtrostender Stahl, Festigkeitsklasse 80, gemäß EN 10088-1: 2023	Hochkorrosionsbeständiger Stahl, Festigkeitsklasse 80, gemäß EN 10088-1: 2023
3	Unterlegscheibe	Nichtrostender Stahl, gemäß EN 10088-1; 2023	Hochkorrosionsbeständiger Stahl, gemäß EN 10088-1: 2023
4	Sechskantmutter	Nichtrostender Stahl, Festigkeitsklasse 80, EN ISO 3506-2:2020, gemäß EN 10088-1: 2023	Hochkorrosionsbeständiger Stahl, Festigkeitsklasse 80, EN ISO 3506-2:2020, gemäß EN 10088-1: 2023

Abbildungen nicht maßstäblich

Bewehrungsanschluss mit fischer Injektionssystem FIS RC II und FIS RC II Low Speed

Produktbeschreibung

Eigenschaften und Werkstoffe von fischer Bewehrungsankern

Anhang A6

Appendix 7 / 24

²⁾ Beide Bohrernenndurchmesser sind möglich.

Spezifizierung des Verwendungszwecks Teil 1

Tabelle B1.1: Übersicht Nutzungs- und Leistungsk
--

Beanspruchung der Verankerung		FIS	RC II mit				
	Beton	Territoria Propositiva de Carre	er Bewehrungsanker FRA				
Hammerbohren oder Pressluftbohren mit Standardbohrer		alle G	rößen				
Hammerbohren mit Hohlbohrer (fischer "FHD", Heller "Duster Expert", Bosch "Speed Clean", Hilti "TE-CD, TE- YD")		Bohrernenndu 12 mm bi	rchmesser (d ₀) is 35 mm				
Nutzungs- Trockener kategorie I1 oder nasser Beton		Alle G	rößen				
Statische und quasi-statische Beanspruchung im gerissenen Beton	alle Größen	Tabellen: C1.1 C1.2 C1.3 C2.1 C2.2 C2.3	alle Größen	Tabellen: C1.1 C1.2 C1.3 C2.1 C2.2 C2.3 C5.1 C5.2			
Seismische Beanspruchung / Einwirkung	Tabellen:						
Einbaurichtung	D3 (vertikal nach	unten, horizontal ur	nd vertikal nach ober	ı (z.B Überkopf)			
Einbautemperatur		T _{i,min} = -10 °C bis	s T _{i,max} = +40 °C				
Gebrauchs- temperatur bereich Temperatur- bereich	-40 °C bis +		(maximale Kurzzeittemperatur +80 °0 maximale Langzeittemperatur +50 °0				
Brandeinwirkung	alle Größen	Anhang C6	alle Größen	Tabelle C5.			

Bewehrungsanschluss mit fischer Injektionssystem FIS RC II und FIS RC II Low Speed

Verwendungszweck Spezifikationen Teil 1 Anhang B1

Spezifizierung des Verwendungszwecks Teil 2

Beanspruchung der Verankerung:

- Statische und quasi-statische Beanspruchung: Betonstahldurchmesser 8 mm bis 40 mm; FRA M12 bis M24.
- Seismische Beanspruchung / Einwirkung: Betonstahldurchmesser 8 mm bis 40 mm.
- Nutzungsdauer 50 und 100 Jahre: Betonstahldurchmesser 8 mm bis 40 mm.
- Brandbeanspruchung: Betonstahldurchmesser 8 mm bis 40 mm; FRA M12 bis M24.

Verankerungsgrund:

- bewehrter oder unbewehrter, verdichteter Normalbeton ohne Fasern gemäß EN 206:2013+ A2:2021.
- Betonfestigkeitsklassen C12/15 bis C50/60 gemäß EN 206:2013+ A2:2021 für statische und quasistatische Beanspruchung.
- Betonfestigkeitsklassen C16/20 bis C50/60 gemäß EN 206:2013+ A2:2021 für seismische Beanspruchung / Einwirkung
- zulässiger Chloridgehalt von 0,40 % (CL 0.40) bezogen auf den Zementgehalt entsprechend EN 206:2013+ A2:2021.
- nicht karbonisierter Beton
 - Anmerkung: Bei einer karbonisierten Oberfläche des bestehenden Betons ist die karbonisierte Schicht vor dem Anschluss des neuen Stabes im Bereich des nachträglichen Bewehrungsanschlusses mit dem Durchmesser von φ + 60 mm zu entfernen. Die Tiefe des zu entfernenden Betons muss mindestens der Mindestbetondeckung für die entsprechenden Umweltbedingungen nach EN 1992-1-1:2011entsprechen. Dies entfällt bei neuen, nicht karbonisierten Bauteilen und bei Bauteilen in trockener Umgebung.

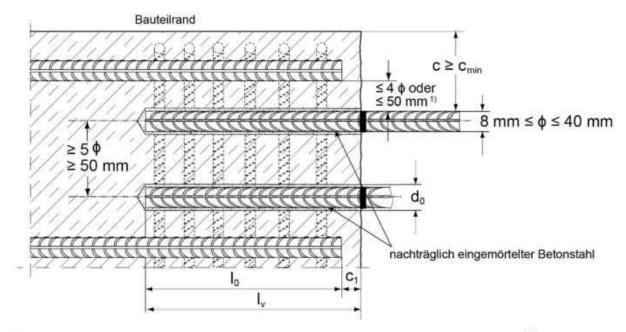
Anwendungsbedingung (Umweltbedingungen) mit fischer Bewehrungsanker FRA:

 Für alle Bedingungen gemäß EN 1993-1-4:2006+A1:2015 entsprechend der Korrosionsbeständigkeitsklassen nach Anhang A6 Tabelle A6.2.

Bemessung:

- Die ingenieurmäßige Bemessung nach EN 1992-1-1:2011, EN 1992-1-2:2011 und Anhang B3 und B4. erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Planers.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen.
- Die tatsächliche Lage der Bewehrung im vorhandenen Bauteil ist auf der Grundlage der Baudokumentation festzustellen und beim Entwurf zu berücksichtigen.

Einbau:


- Nachträglich eingemörtelter Betonstahl oder nachträglich eingemörtelte fischer Bewehrungsanker FRA sind durch entsprechend geschultes Personal und unter Überwachung auf der Baustelle einzubauen. Die Bedingungen für die entsprechende Schulung des Baustellenpersonals und die Überwachung auf der Baustelle obliegt den Mitgliedstaaten, in denen der Einbau vorgenommen wird.
- Überprüfung der Lage der vorhandenen Bewehrung (wenn die Lage der vorhandenen Bewehrung nicht ersichtlich ist, muss diese mittels dafür geeigneter Bewehrungssuchgeräte auf Grundlage der Baudokumentation festgestellt und für die Übergreifungsstöße am Bauteil markiert werden).

Bewehrungsanschluss mit fischer Injektionssystem FIS RC II und FIS RC II Low Speed

Allgemeine Konstruktionsregeln für eingemörtelten Betonstahl

Bild B3.1:

- Bewehrungsanschlüsse dürfen nur für die Übertragung von Zugkräften in Richtung der Stabachse verwendet werden.
- Die Übertragung von Querkräften zwischen vorhandenem und neuem Beton ist entsprechend EN 1992-1-1:2011.
- Die Betonierfugen sind mindestens derart aufzurauen, dass die Zuschlagstoffe herausragen.

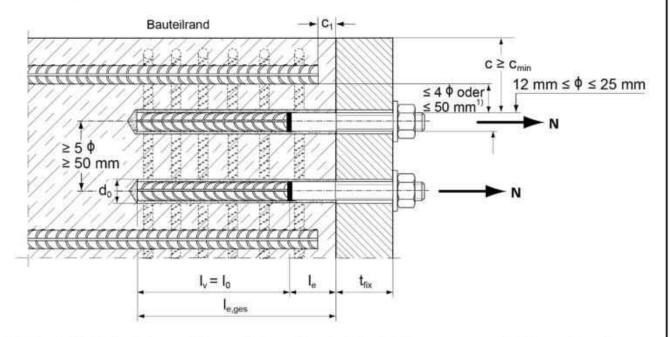
- 1) Ist der lichte Abstand der gestoßenen Stäbe größer als 4 φ oder 50 mm, so muss die Übergreifungslänge um die Differenz zwischen dem vorhandenen lichten Abstand und dem kleineren Wert von 4 φ bzw. 50 mm vergrößert werden.
 - Betondeckung des eingemörtelten Betonstahls
 - c₁ Betondeckung an der Stirnseite des einbetonierten Betonstahls
 - c_{min} Mindestbetondeckung gemäß **Tabelle B5.1** und der EN 1992-1-1:2011, Abschnitt 4.4.1.2
 - Nenndurchmesser Betonstahl
 - Länge des Übergreifungsstoßes, gemäß EN 1992-1-1:2011 bei statischer Belastung und gemäß EN 1998-1:2004+AC:2009, Abschnitt 5.6.3 bei Erdbebenbeanspruchung
 - l_v wirksame Setztiefe, ≥ l₀ + c₁
 - d_o Bohrernenndurchmesser, siehe Anhang B6

Abbildungen nicht maßstäblich

Bewehrungsanschluss mit fischer Injektionssystem FIS RC II und FIS RC II Low Speed

Verwendungszweck

Allgemeine Konstruktionsregeln für eingemörtelten Betonstahl


Anhang B3

Appendix 10 / 24

Allgemeine Konstruktionsregeln für eingemörtelte fischer Bewehrungsanker FRA

Bild B4.1:

- fischer Bewehrungsanker FRA dürfen nur für die Übertragung von Zugkräften in Richtung der Stabachse verwendet werden.
- Die Zugkraft muss über einen Übergreifungsstoß mit der im Bauteil vorhandenen Bewehrung weitergeleitet werden.
- Der Querlastabtrag ist durch geeignete zusätzliche Maßnahmen sicher zu stellen, z.B. durch Schubknaggen oder Dübel mit einer Europäischen Technischen Bewertung (ETA).
- In der Ankerplatte sind für den Bewehrungsanker FRA die Bohrlöcher als Langlöcher mit Achse in Richtung der Querkraft auszuführen.

- 1) Ist der lichte Abstand der gestoßenen Stäbe größer als 4 φ oder 50 mm, so muss die Übergreifungslänge um die Differenz zwischen dem vorhandenen lichten Abstand und dem kleineren Wert von 4 φ bzw. 50 mm vergrößert werden.
 - c Betondeckung des eingemörtelten fischer Bewehrungsankers FRA
 - c. Betondeckung an der Stirnseite des einbetonierten Betonstahls
 - Cmin Mindestbetondeckung gemäß **Tabelle B5.1** und der EN 1992-1-1:2011, Abschnitt 4.4.1.2
 - φ Nenndurchmesser Betonstahl
 - Länge des Übergreifungsstoßes, gemäß EN 1992-1-1:2011, Abschnitt 8.7.3
 - le,ges Setztiefe, ≥ lo + le
 - d_o Bohrernenndurchmesser, siehe Anhang B6
 - Länge des eingemörtelten Gewindebereichs
 - t_{fix} Dicke des Anbauteils
 - Iv wirksame Setztiefe

Abbildungen nicht maßstäblich

Bewehrungsanschluss mit fischer Injektionssystem FIS RC II und FIS RC II Low Speed

Verwendungszweck

Allgemeine Konstruktionsregeln für eingemörtelte fischer Bewehrungsanker

Anhang B4

Appendix 11 / 24

Tabelle B5.1: Minimale Betonüberdeckung c_{min} 1) in Abhängigkeit von der Bohrmethode und der Bohrtoleranz

	Nenndurchmesser	1	Minimale Betonüberdeckung c _{min}									
Bohrmethode	Betonstahl ф [mm]	Ohne Bohrhilfe 2) [mm]	Mit Boh	rhilfe ²⁾ [mm]								
Hammerbohren mit	< 25	30 mm + 0,06 l _v ≥ 2 ф	30 mm + 0,02 l _v ≥ 2 ф									
Standardbohrer oder mit Hohlbohrer	≥ 25	40 mm + 0,06 l _v ≥ 2 φ	40 mm + 0,02 l _v ≥ 2 φ	Bohrhilfe								
December 1	< 25	50 mm + 0,08 l _v	50 mm + 0,02 l _v	Bonrniire								
Pressluftbohren	≥ 25	60 mm + 0,08 l _v ≥ 2 φ	60 mm + 0,02 l _v ≥ 2 ф									

¹⁾ Siehe Anhang B3, Bild B3.1 und Anhang B4, Bild B4.1 Anmerkung: Die minimale Betondeckung gemäß EN 1992-1-1:2011 muss eingehalten werden. Die gleichen minimalen Betonüberdeckungen gelten für Betonstähle bei seismischer Beanspruchung c_{min,seis} = 2 φ.

Tabelle B5.2: Auspressgeräte, zugehörige Kartuschen und maximale Einbindetiefen ly, max

Betonstahl	fischer Bewehrungs-	Hand-Auspressgerät	Akku- und Pneumatik- Auspressgerät (klein)	Akku- und Pneumatik- Auspressgerät (groß)			
	anker FRA						
Africa Constants (1)		< 5	> 500 ml				
φ [mm]	Gewinde [-]	lv,max / le,	ges,max [mm]	ly,max / le,ges,max [mm]			
8	1 444		1000				
10			1000				
12	FRA M12 FRA HCR M12	1000	1200				
14				1800			
16	FRA M16 FRA HCR M16		1500	a London			
18, 20, 22, 24	FRA M20 FRA HCR M20	700	1300				
25	FRA M24 FRA HCR M24	700	1000	2000			
28		700	700				
30, 32	-	700	700	T _{i,} > 0 °C: 1500 T _{i,} ≤ 0 °C: 2000			
40	***	700	700	1300			

Tabelle B5.3: Bedingungen zur Verwendung eines Statikmischers ohne Verlängerungsschlauch

Bohrernenndurch- messer	do		10	12	14	16	18	20	24	25	30	35	40	55
Bohrlochtiefe ho bei	FIS MR Plus	[mm]	≤	90	≤ 120	≤ 140	≤ 150	≤ 160	≤ 190			≤ 210	}	
Verwendung	FIS JMR		12	-	≤ 90	≤ 160	≤ 180	≤ 190	≤ 2	20		≤ 2	250	

Bewehrungsanschluss mit fischer Injektionssystem FIS RC II und FIS RC II Low Speed

Verwendungszweck

Minimale Betondeckung:

Auspressgeräte, zugehörige Kartuschen und maximale Einbindetiefen

Anhang B5

Appendix 12 / 24

²⁾ Für FRA (HCR) le,ges an Stelle von lv.

		tur im gsgrund	Maximal V	erarbeitungszeit ¹⁾ twork	Minimale Aushärtezeit ²⁾ t _{cure}			
	[°C]		FIS RC II	FIS RC II Low Speed	FIS RC II	FIS RC II Low Speed		
-10	bis	-5	20 min 3)	[-]	12 h	-		
>-5	bis	0	20 min 3)	40 min	12 h	5 d		
> 0	bis	5	13 min 3)	30 min	3 h	48 h		
> 5	bis	10	9 min 3)	20 min	90 min	24 h		
> 10	bis	20	5 min	13 min	60 min	120 min		
> 20	bis	30	4 min	9 min	45 min	60 min		
> 30	bis	40	2 min 4)	7 min	35 min	45 min		

¹⁾ Zeitraum vom Beginn der Mörtelverfüllung bis zum Setzen und Positionieren des Betonstahls / fischer Bewehrungsanker FRA.

Tabelle B6.2: Werkzeuge für die Bohrlocherstellung, Bohrlochreinigung und Mörtelverfüllung

Betonstahl			Bohren ur	nd Reinigen		Mörtelve	rfüllung
	fischer Bewehrungs- anker FRA	Bohrer- nenn- durch- messer	Bohr- schneiden- durchmesser	Stahlbürsten durch- messer	Durch- messer der fischer Druckluft- düse	Durch- messer der Verlängerung	Injektions- hilfe
φ [mm]	Gewinde	d ₀ [mm]	d _{cut} [mm]	d₀ [mm]	[mm]	[mm]	[Farbe]
81)		10	≤ 10,50	11			
01/	1000	12	≤ 12,50	12,5			10.00
10 ¹⁾	10.000	12	≤ 12,50	12,5	11		natur
10.7	777	14	≤ 14,50	15		9	GVEV.
12 ¹⁾	FRA M12	14	≤ 14,50	15		1	blau
12"	FRA HCR M12	16	≤ 16,50	17	15		rot
14		18	≤ 18,50	19			gelb
16	FRA M16 FRA HCR M16	20	≤ 20,55	21,5	40		grün
18	FRA M20	25	- DE EE	20.5	19		a alarma a
20	FRA HCR M20	25	≤ 25,55	26,5			schwarz
22	(555)	30	< 20 FF	32		0 -445	
24	1453	30	≤ 30,55	32		9 oder 15	grau
251)	FRA M24	30	≤ 30,55	32	28		A00076
251)	FRA HCR M24	35	≤ 35,70	37			braun
28	-	35	≤ 35,70	37			braun
30	THE PARTY OF THE P	40	< 40.70] [ret.
32	=	40	≤ 40,70	42	38		rot
40	1777	55	≤ 55,70	58	38	15	natur

¹⁾ Beide Bohrernenndurchmesser sind möglich.

Bewehrungsanschluss mit fischer Injektionssystem FIS RC II und FIS RC II Low Speed

Verwendungszweck

Verarbeitungs- und Aushärtezeiten

Werkzeuge für die Bohrlocherstellung, Bohrlochreinigung und Mörtelverfüllung

Anhang B6

Appendix 13 / 24

²⁾ In feuchtem Beton sind die Aushärtezeiten zu verdoppeln.

³⁾ Bei Temperaturen im Verankerungsgrund unter 10°C, muss die Mörtelkartusche auf +15°C erwärmt werden.

⁴⁾ Bei Temperaturen im Verankerungsgrund über 30°C, muss die Mörtelkartusche auf +15°C bis 20°C heruntergekühlt werden.

Sicherheitshinweise

Vor Benutzung bitte das Sicherheitsdatenblatt (SDB) für korrekten und sicheren Gebrauch lesen!

Bei der Arbeit mit FIS RC II / FIS RC II Low Speed geeignete Schutzkleidung, Schutzbrille und Schutzhandschuhe tragen.

Wichtig: Bitte Gebrauchsanweisung beachten, die jeder Verpackung beiliegt.

Montageanleitung Teil 1; Montage mit FIS RC II / FIS RC II Low Speed

Bohrlocherstellung

Bemerkung: Vor dem Bohren karbonisierten Beton entfernen; Kontaktflächen reinigen (siehe **Anhang B2**) Bei Fehlbohrungen sind diese zu vermörteln.

	Hammer- oder Pressluftbohren	
1a		Die Bohrlocherstellung bis zur erforderlichen Setztiefe erfolgt drehschlagend mit einem Hartmetall-Hammerbohrer oder Pressluftbohrer. Bohrergrößen siehe Tabelle B6.2 .
	Hammerbohren mit Hohlbohrer	Die Bohrlocherstellung bis zur erforderlichen Setztiefe
1b		erfolgt drehschlagend mit einem Hammerbohrer (Hohlbohrer). Absaugbedingungen siehe Bohrlochreinigung Anhang B8 Bohrergrößen siehe Tabelle B6.2.
	Constitue Consti	Betonüberdeckung c messen und prüfen (c _{drill} = c + Ø / 2) Parallel zum Rand und zur bestehenden Bewehrung
		bohren. Wenn möglich, Bohrhilfe verwenden.
2		Für Bohrtiefen $I_v > 20$ cm Bohrhilfe verwenden. Drei Möglichkeiten:
		A) Bohrhilfe B) Latte oder Wasserwaage C) Visuelle Kontrolle
	21.61.12.2	Minimale Betonüberdeckung cmin siehe Tabelle B5.1.

Bewehrungsanschluss mit fischer Injektionssystem FIS RC II und FIS RC II Low Speed

Verwendungszweck

Sicherheitshinweise; Montageanleitung Teil 1, Bohrlocherstellung

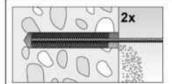
Anhang B7

Appendix 14 / 24

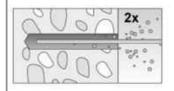
Montageanleitung Teil 2; Montage mit FIS RC II / FIS RC II Low Speed

Bohrlochreinigung

Hammerbohren oder Pressluftbohren



Bohrloch reinigen: Bei $d_0 < 18$ mm und Bohrtiefen I_V bzw. $I_{e,ges} \le 12 \cdot \phi$ Bohrloch zweimal von Hand ausblasen.

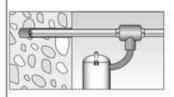

Bei d₀ ≥ 18 mm und Bohrtiefen I_v bzw. I_{e,ges} > 12 · ¢ Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p ≥ 6 bar). Passende fischer Druckluftdüse verwenden (siehe **Tabelle B6.2**).

3a

Bohrloch zweimal ausbürsten. Für Bohrlochdurchmesser d₀ ≥ 30 mm eine Bohrmaschine benutzen. Die maximale Drehzahl während der Reinigung darf 550 Umdrehungen pro Minute nicht überschreiten. Bei tiefen Bohrlöchern Verlängerung verwenden.

Passende Bürsten verwenden (siehe Tabelle B6.2).

Bohrloch reinigen: Bei $d_0 < 18$ mm und Bohrtiefen I_V bzw. $I_{e,ges} \le 12 \cdot \phi$ Bohrloch zweimal von Hand ausblasen.



Bei d₀ ≥ 18 mm und Bohrtiefen l₀ bzw. le,ges > 12 · ф Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p ≥ 6 bar). Passende fischer Druckluftdüse verwenden (siehe **Tabelle B6.2**).

Hammerbohren mit Hohlbohrer

3b

Verwendung eines geeigneten Staubabsaugsystems wie z.B. fischer FVC 35 M oder eines Staubabsaugsystems mit vergleichbaren Leistungsdaten.

Bohrloch mit Hohlbohrer erstellen. Das Staubabsaugsystem muss den Bohrstaub konstant während des gesamten Bohrvorgangs absaugen und auf maximale Leistung eingestellt sein.

Keine weitere Borlochreinigung notwendig.

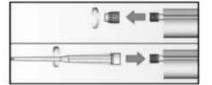
Bewehrungsanschluss mit fischer Injektionssystem FIS RC II und FIS RC II Low Speed

Verwendungszweck

Montageanleitung Teil 2, Bohrlochreinigung

Anhang B8

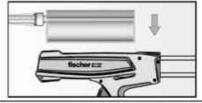
Appendix 15 / 24


Montageanleitung Teil 3; Montage mit FIS RC II / FIS RC II Low Speed

Vorbereitung der Betonstähle bzw. fischer Bewehrungsanker FRA und der Mörtelkartusche

Nur saubere, ölfreie und trockene Betonstähle und fischer Bewehrungsanker FRA verwenden.

Die Einbindetiefe I_V markieren (z. B. mit Klebeband) Den Betonstahl in das Bohrloch stecken und prüfen, ob die Bohrlochtiefe und die Einbindetiefe I_V bzw. I_{e,ges} übereinstimmen.


5

Die Verschlusskappe abschrauben.

Den Statikmischer aufschrauben (die Mischspirale im Mischrohr muss deutlich sichtbar sein).

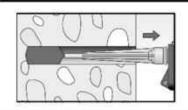
6

Die Mörtelkartusche in ein geeignetes Auspressgerät legen.

7

Einen ca. 10 cm langen Mörtelstrang auspressen bis die Farbe des Mörtels gleichmäßig grau gefärbt ist. Nicht gleichmäßig grau gefärbter Mörtel darf nicht verwendet werden.

Bewehrungsanschluss mit fischer Injektionssystem FIS RC II und FIS RC II Low Speed


Montageanleitung Teil 3; Vorbereitung der Betonstähle / fischer Bewehrungsanker und der Mörtelkartusche

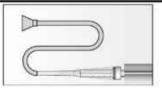
Anhang B9

Appendix 16 / 24

Montageanleitung Teil 4; Montage mit FIS RC II / FIS RC II Low Speed

Mörtelinjektion; Bohrlochtiefe ≤ 250 mm

Das Bohrloch vom Grund her mit Mörtel verfüllen. Bei jedem Hub den Statikmischer langsam zurückziehen. Luftblasen sind zu vermeiden. Das Bohrloch zu ca. 2/3 mit Mörtel verfüllen, um sicher zu gehen, dass der Ringspalt zwischen Betonstahl und Beton über die gesamte Einbindetiefe vollständig verfüllt ist.


Die Bedingungen für die Mörtelinjektion ohne Verlängerungsschlauch sind in **Tabelle B5.3** zu entnehmen.

8a

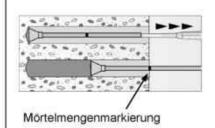
Nach der Bohrlochverfüllung Auspressgerät entspannen, um Mörtelnachlauf zu vermeiden.

Mörtelinjektion; Bohrlochtiefe

Auf den Statikmischer FIS MR Plus oder FIS JMR ein geeigneter Verlängerungsschlauch und passende Injektionshilfe aufstecken (siehe **Tabelle B6.2**).

Mörtelmengenmarkierung

Jeweils eine Markierung für die erforderliche Mörtelmenge I_m und die Einbindetiefe I_v bzw. I_{e.ges} anbringen (Klebeband oder Markierungsstift)


a) Faustformel:

$$l_m = \frac{1}{3} \cdot l_v bzw. l_m = \frac{1}{3} \cdot l_{e,ges} \text{ [mm]}$$

b) Genaue Gleichung für die optimale Mörtelmenge:

$$l_m = l_v bzw. l_{e,ges} \left((1,2 \cdot \frac{d_s^2}{d_0^2} - 0,2) \right) \text{[mm]}$$

8b

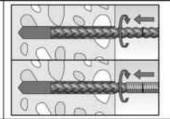
Die Injektionshilfe bis zum Bohrlochgrund in das Bohrloch einstecken und Mörtel injizieren. Während des Verfüllvorgangs der Injektionshilfe ermöglichen, dass sie durch den Druck des eingespritzten Mörtels automatisch aus dem Bohrloch herausgedrückt wird. Nicht aktiv herausziehen!

Das Bohrloch zu ca. 2/3 mit Mörtel verfüllen, um sicher zu gehen, dass der Ringspalt zwischen Betonstahl und Beton über die gesamte Einbindetiefe vollständig verfüllt wird.

Verfüllen, bis die Mörtelmengenmarkierung I_m sichtbar wird. Maximale Einbindetiefen siehe **Tabelle B5.2.**

Nach der Bohrlochverfüllung Auspressgerät entspannen, um Mörtelnachlauf zu vermeiden.

Bewehrungsanschluss mit fischer Injektionssystem FIS RC II und FIS RC II Low Speed


Verwendungszweck Montageanleitung Teil 4, Mörtelinjektion Anhang B10

Appendix 17 / 24

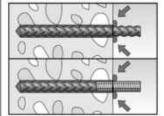
Montageanleitung Teil 5; Montage mit FIS RC II / FIS RC II Low Speed

Setzen des Betonstahls bzw. fischer Bewehrungsanker FRA

9

Den Betonstahl / fischer Bewehrungsanker FRA in das verfüllte Bohrloch bis zur Setztiefenmarkierung einführen.

Empfehlung:


Erleichterung des Setzvorgangs durch hin und her drehende Bewegungen des Betonstahls / fischer Bewehrungsankers FRA.

10

Bei Überkopfmontage den Betonstahl / fischer Bewehrungsanker FRA gegen Herausfallen mit Keilen sichern bis der Mörtel auszuhärten beginnt.

11

Nach dem Setzen des Betonstahls / fischer Bewehrungsanker FRA muss der Ringspalt vollständig mit Mörtel ausgefüllt sein.

Setzkontrolle

- Die gewünschte Setztiefe I_{v.} bzw. I_{e.ges} ist erreicht, wenn die Setztiefenmarkierung am Bohrlochmund (Betonoberfläche) sichtbar ist.
- Sichtbarer M\u00f6rtelaustritt am Bohrlochmund.

12

Beachtung der Verarbeitungszeit "twork" (siehe Tabelle B6.1), die je nach Baustofftemperatur unterschiedlich sein kann. Während der Verarbeitungszeit "twork" ist ein geringfügiges Ausrichten des Betonstahls / fischer Bewehrungsanker FRA möglich.

Eine Belastung des Bewehrungsanschlusses darf erst nach Ablauf der Aushärtezeit "tcure" erfolgen (siehe Tabelle B6.1).

13

Montage des Anbauteils bei fischer Bewehrungsanker FRA, max Tinst siehe Tabelle A6.1.

Bewehrungsanschluss mit fischer Injektionssystem FIS RC II und FIS RC II Low Speed

Verwendungszweck

Montageanleitung Teil 5, Setzen des Betonstahls bzw. fischer Bewehrungsanker

Anhang B11

Appendix 18 / 24

Minimale Verankerungslängen und minimale Übergreifungslängen für Nutzungsdauer 50 Jahre

Die minimale Verankerungslänge I_{b,min} und die minimale Übergreifungslänge I_{0,min} entsprechend EN 1992-1-1:2011 müssen mit dem entsprechendem Erhöhungsfaktor α_{Ib} gemäß **Tabelle C1.1** multipliziert werden.

Tabelle C1.1: Erhöhungsfaktor α_{lb} in Abhängigkeit der Betonfestigkeit und des Bohrverfahrens

Betonstahl /				Erhö	hungsfakt	or cub					
fischer Bewehrungsanker FRA φ [mm]	Betonfestigkeitsklasse										
	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
8 - 25			1,	00	i i		1,	10	1,20		
28 - 32		1,00									
40		1,00		1,07	1,22	1,23	1,24	1,26	1,27		

Tabelle C1.2: Abminderungsfaktor k₀ in Abhängigkeit der Betonfestigkeit und des Bohrverfahrens

Betonstahl /				Abmin	derungsfa	aktor kb					
fischer Bewehrungsanker FRA ∳ [mm]	Betonfestigkeitsklasse										
	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
8 - 25		l.	l.i		1,00						
28 - 32		1,00 0,91 0,84 0,84									
40	1,00 0,90 0,82 0,76 0,7								0,71		

Tabelle C1.3: Bemessungswerte der Verbundspannung fbd,PIR in N/mm² in Abhängigkeit der Betonfestigkeit und des Bohrverfahrens und für gute Verbundbedingungen fbd,PIR = kb · fbd

Ibd,PIR - Kb Ib

fbd:

Bemessungswerte der Verbundspannung in N/mm² in Abhängigkeit von der Betonfestigkeitsklasse und dem Stabdurchmesser für gute Verbundbedingungen (für alle anderen Verbundbedingungen sind die Werte mit η_1 = 0,7 zu multiplizieren) und einem empfohlenen Teilsicherheitsbeiwert γ_c = 1,5 gemäß EN 1992-1-1:2011

kb: Abminderungsfaktor gemäß Tabelle C1.2

Betonstahl / fischer Bewehrungsanker FRA φ [mm]		Verbundspannung fbd,PIR [N/mm²] Betonfestigkeitsklasse										
	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60			
8 - 25	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3			
28 - 32	1,6	2,0	2,3	2,7	3,0	3,4	3,4	3,4	3,7			
40	1,5	1,8	2,1	2,5			2,8					

Bewehrungsanschluss mit fischer Injektionssystem FIS RC II und FIS RC II Low Speed

Leistungen

Erhöhungsfaktor α_{lb}, Abminderungsfaktor k_b, Bemessungswerte der Verbundspannung f_{bd,PIR} Anhang C1

Appendix 19 / 24

Minimale Verankerungslängen und minimale Übergreifungslängen für Nutzungsdauer 100 Jahre

Die minimale Verankerungslänge I_{b,min} und die minimale Übergreifungslänge I_{0,min} entsprechend EN 1992-1-1:2011 müssen mit dem entsprechendem Erhöhungsfaktor α_{Ib,100y} gemäß **Tabelle C2.1** multipliziert werden.

Tabelle C2.1: Erhöhungsfaktor α_{lb,100y} in Abhängigkeit der Betonfestigkeit und des Bohrverfahrens

Betonstahl / fischer	Erhöhungsfaktor α _{Ib,100y}										
Bewehrungsanker FRA φ [mm]	Betonfestigkeitsklasse										
	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
8 - 12			1,00			1,10	1,20	1,20	1,30		
14 - 25			1,00			1,10	1,20	1,20	1,20		
28 - 32		1,00									
40	1,00 1,02 1,19 1,20				1,20	1,21	1,22	1,23	1,25		

Tabelle C2.2: Abminderungsfaktor k_{b,100y} in Abhängigkeit der Betonfestigkeit und des Bohrverfahrens

Betonstahl / fischer				Abminde	erungsfak	tor kb,100y				
Bewehrungsanker FRA φ [mm]	Betonfestigkeitsklasse									
	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60	
8 - 12		1,00								
14 - 25				1,00				0,92	0,86	
28 - 32	1,00				0,90	0,90	0,82	0,76	0,76	
40	1,00				0,89	0,80	0,73	0,67	0,63	

Tabelle C2.3: Bemessungswerte der Verbundspannung fbd,PIR,100y in N/mm² in Abhängigkeit der Betonfestigkeit und des Bohrverfahrens und für gute Verbundbedingungen fbd,PIR,100y = kb,100y · fbd

100,E10,100y 110,100y 100

Bemessungswerte der Verbundspannung in N/mm² in Abhängigkeit von der Betonfestigkeitsklasse und dem Stabdurchmesser für gute Verbundbedingungen (für alle anderen Verbundbedingungen sind die Werte mit $\eta_1 = 0.7$ zu multiplizieren) und einem empfohlenen Teilsicherheitsbeiwert $\gamma_c = 1.5$ gemäß EN 1992-1-1:2011

k_{b,100y}: Abminderungsfaktor gemäß Tabelle C2.2

Hammerbohren mit S	standardi	onrer ode	***************************************	The state of the s	nung f _{bd,F}		nm²]			
Betonstahl / fischer	Betonfestigkeitsklasse									
Bewehrungsanker FRA	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60	
8 - 12	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3	
14 - 25	1,6	2,0	2,3	2,7	3,0	3,4	3,7	3,7	3,7	
28 - 32	1,6	2,0	2,3	2,7	2,7	3,0	3,0	3,0	3,4	
40	1,5	1,8	2,1			2	,5			

Bewehrungsanschluss mit fischer Injektionssystem FIS RC II und FIS RC II Low Speed

Leistungen

fbd:

Erhöhungsfaktor α_{lb,100y}, Abminderungsfaktor k_{b,100y}, Bemessungswerte der Verbundspannung f_{bd,PiR,100y}

Anhang C2

Appendix 20 / 24

Minimale Verankerungslängen und minimale Übergreifungslängen unter seismischer Einwirkung für die Nutzungsdauer 50 Jahre

Die minimale Verankerungslänge I_{b,min} und die minimale Übergreifungslänge I_{0,min} entsprechend EN 1992-1-1:2011 müssen mit dem entsprechendem Erhöhungsfaktor α_{Ib,seis} gemäß Tabelle C3.1 multipliziert werden.

Tabelle C3.1: Erhöhungsfaktor α_{lb,seis} in Abhängigkeit der Betonfestigkeit und des Bohrverfahrens

Hammerbohren / Hohlbohren / Pressluftbohren

Betonstahl		Erhöhungsfaktor α _{lb,sels}									
φ [mm]	Betonfestigkeitsklasse										
4 []	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60			
8 - 25			1,	10	1,20						
28 - 32				1,	00						
40	_1)	1,00	1,07	1,22	1,23	1,24	1,26	1,27			

¹⁾ keine Leistung bewertet

Tabelle C3.2: Abminderungsfaktor k_{b,seis} für Hammerbohren / Hohlbohren / Pressluftbohren; Nutzungsdauer 50 Jahre

Hammerbohren / Hohlbohren / Pressluftbohren

Betonstahl	Abminderungsfaktor k _{b,sels}									
φ [mm]	Betonfestigkeitsklasse									
	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
8 - 25		•		1,	00					
28 - 32		1,00						0,84		
40	_1)	1,00	0,86	0,76	0,69	0,63	0,58	0,54		

¹⁾ keine Leistung bewertet

Tabelle C3.3: Bemessungswerte der Verbundspannung f_{bd,PIR,seis} in N/mm² für Hammerbohren / Hohlbohren / Pressluftbohren unter seismischer Einwirkung und für gute Verbundbedingungen; Nutzungsdauer 50 Jahre

fbd,PIR,seis = kb,seis • fbd

Betonstahl			Verbur	ndspannung	fbd,PIR,seis [N/mm²]		
φ [mm]				Betonfestig	keitsklasse		g.	29
	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 - 25	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3
28 - 32	2,0	2,3	2,7	3,0	3,4	3,4	3,4	3,7
40	_1)				2,1	·		

¹⁾ keine Leistung bewertet

Bewehrungsanschluss mit fischer Injektionssystem FIS RC II und FIS RC II Low Speed

Leistungsdaten

Erhöhungsfaktor $\alpha_{lb,seis}$, Abminderungsfaktor $k_{b,seis}$, Bemessungswerte der Verbundspannung $f_{bd,PIR,seis}$

Anhang C3

Appendix 21 / 24

Minimale Verankerungslängen und minimale Übergreifungslängen unter seismischer Einwirkung für die Nutzungsdauer 100 Jahre

Die minimale Verankerungslänge I_{b,min} und die minimale Übergreifungslänge I_{0,min} entsprechend EN 1992-1-1:2011 müssen mit dem entsprechendem Erhöhungsfaktor α_{Ib,seis} 100y gemäß Tabelle C4.1 multipliziert werden.

Tabelle C4.1: Erhöhungsfaktor αι_{b,seis100y} in Abhängigkeit der Betonfestigkeit und des Bohrverfahrens

Betonstahl φ [mm]	Erhöhungsfaktor α _{Ib,seis,100y} Betonfestigkeitsklasse									
	8 – 12		1,	00		1,10	1,20	1,20	1,30	
14 - 25		1,	00		1,10	1,20	1,20	1,20		
28 - 32				1,00	A:			1,10		
40	_1)	1,02	1,19	1,20	1,21	1,22	1,23	1,25		

¹⁾ keine Leistung bewertet.

Tabelle C4.2: Abminderungsfaktor k_{b,seis,100y} für Hammerbohren / Hohlbohren / Pressluftbohren; Nutzungsdauer 100 Jahre

Betonstahl φ [mm]		Abminderungsfaktor k _{b,seis,100y}									
	Betonfestigkeitsklasse										
	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60			
8 - 12		1,00									
14 - 25	1,00 0,92 0,										
28 - 32	1,00 0,90 0,90 0,82 0,76										
40	_1)	0,86	0,74	0,66	0,59	0,54	0,50	0,47			

¹⁾ keine Leistung bewertet.

Tabelle C4.3: Bemessungswerte der Verbundspannung fbd,PIR,seis,100y in N/mm² für Hammerbohren / Hohlbohren / Pressluftbohren unter seismischer Einwirkung und für gute Verbundbedingungen; Nutzungsdauer 100 Jahre fbd,PIR,seis,100y = kb,seis,100y • fbd

Betonstahl φ [mm]	Verbundspannung fbd,PIR,seis,100y [N/mm²]										
	Betonfestigkeitsklasse										
	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60			
8 - 12	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3			
14 - 25	2,0	2,3	2,7	3,0	3,4	3,7	3,7	3,7			
28 - 32	2,0	2,3	2,7	2,7	3,0	3,0	3,0	3,4			
40	_1)				1,8						

¹⁾ keine Leistung bewertet.

Bewehrungsanschluss mit fischer Injektionssystem FIS RC II und FIS RC II Low Speed

Leistungsdaten

Erhöhungsfaktor 0(lb,seis,100y, Abminderungsfaktor kb,seis,100y, Bemessungswerte der Verbundspannung fbd,PIR,seis,100y

Anhang C4

Appendix 22 / 24

Tabelle C5.1:	Nennwert der charakteristischen Streckgrenze für den Betonstahl des
	fischer Bewehrungsankers FRA

fischer Bewehrungsanker FRA	CR	M12	M16	M20	M24			
Nennwert der charakteristischen Streckgrenze für den Betonstahl								
Betonstahl Durchmesser	ф	[mm]	12	16	20	25		
Nennwert der charakt. Streck- grenze für den Betonstahl	f_{yk}	[N/mm ²]	500	500	500	500		
Teilsicherheitsbeiwert	YMs,N ¹⁾	[-]		1,	15			

¹⁾ Falls keine abweichenden nationalen Regelungen vorliegen

Tabelle C5.2: Charakteristischer Widerstand gegen Stahlversagen unter Zugbeanspruchung von fischer Bewehrungsanker FRA

fischer Bewehrungsanker FRA	R	M12	M16	M20	M24			
Zugtragfähigkeit, Stahlversage	n unter Z	ugbeans	pruchung			-		
Charakteristischer Widerstand	N _{Rk,s}	[kN]	62,0	111,0	173,0	236,5		
Teilsicherheitsbeiwert				å.	-			
Teilsicherheitsbeiwert	YMs,N ¹⁾	[-]	1,4					

¹⁾ Falls keine abweichenden nationalen Regelungen vorliegen

Tabelle C5.3: Charakteristischer Widerstand gegen Stahlversagen von fischer Bewehrungsanker FRA unter Zugbeanspruchung und unter Brandbeanspruchung R30 bis R120

fischer Bewehrungsanker FRA / FRA HCR			M12	M16	M20	M24	
Charakteristischer Widerstand gegen Stahlversagen unter Zugbeanspruchung und unter Brandbeanspruch- ung	R30	N _{Rk,s,fi}	[kN]	2,5	4,7	7,4	10,6
	R60			2,1	3,9	6,1	8,8
	R90			1,7	3,1	4,9	7,1
	R120			1,3	2,5	3,9	5,6

Bewehrungsanschluss mit fischer Injektionssystem FIS RC II und FIS RC II Low Speed

Nennwert der charakt. Streckgrenze für Betonstahl des FRA, Charakt. Widerstand NRk,s,fi gegen Stahlversagen von fischer Bewehrungsanker FRA unter Brandbeanspruchung

Anhang C5

Appendix 23 / 24

Bemessungswert der Verbundspannung fbd,fi bzw. fbd,fi,100y bei erhöhter Temperatur für Betonfestigkeitsklassen C12/15 bis C50/60 (alle Bohrverfahren)

Der Bemessungswert der Verbundspannung f_{bd,fi} bzw. f_{bd,fi,100y} bei erhöhter Temperatur wird mit folgender Gleichung berechnet:

$$f_{bd,fl,(100y)} = k_{fl,(100y)}(\theta) \cdot f_{bd,PIR,(100y)} \cdot \frac{\gamma_c}{\gamma_{m,fl}}$$

Wenn: θ > 74 °C

$$k_{fi,(100y)}(\theta) = \frac{24,308 \cdot e^{-0.012 \cdot \theta}}{f_{bd,PIR,(100y)} \cdot 4.3} \le 1.0$$

Wenn: $\theta > \theta_{max}$ (317 °C)

 $k_{fi}(\theta) = 0$

fod fi

 Bemessungswert der Verbundspannung bei erh\u00f6hter Temperatur in N/mm² f\u00fcr Nutzungsdauer 50 Jahre

fbd,fi,100y

Bemessungswert der Verbundspannung bei erhöhter Temperatur in N/mm² für

Nutzungsdauer 100 Jahre

0

Temperatur in °C in der Verbundmörtelschicht

k_{fi} (θ) k_{fi,100y} (θ) Abminderungsfaktor bei erhöhter Temperatur für Nutzungsdauer 50 Jahre
 Abminderungsfaktor bei erhöhter Temperatur für Nutzungsdauer 100 Jahre

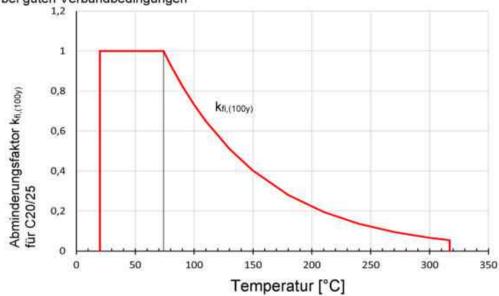
fod PIR

= Bemessungswert der Verbundspannung in N/mm² im Kaltzustand gemäß Tabelle C1.3 unter Berücksichtigung der Betonfestigkeitsklasse, des Durchmessers des Betonstahls, des Bohrverfahrens und der Verbundbedingungen nach EN 1992-1-1:2011

fbd,PIR,100y

= Bemessungswert der Verbundspannung in N/mm² im Kaltzustand gemäß Tabelle C2.3 unter Berücksichtigung der Betonfestigkeitsklasse, des Durchmessers des Betonstahls, des Bohrverfahrens und der Verbundbedingungen nach EN 1992-1-1:2011

Yc


1,5 empfohlener Teilsicherheitsbeiwert nach EN 1992-1-1:2011

Ym,fi

1,0 empfohlener Teilsicherheitsbeiwert

Für den Nachweis bei erhöhter Temperatur muss die Verankerungstiefe nach EN 1992-1-1:2011 Gleichung 8.3 berechnet werden und zwar mit dem temperaturabhängigen höchsten Bemessungswert der Verbundspannung fbd,fi bzw. fbd,fi,100y

Bild C6.1: Beispiel-Diagramm für den Abminderungsfaktor k_{fl,(100y)} (θ) für die Betonfestigkeitsklasse C20/25 bei guten Verbundbedingungen

Bewehrungsanschluss mit fischer Injektionssystem FIS RC II und FIS RC II Low Speed

Leistungen

Bemessungswert der Verbundspannung fbd,fl bzw. fbd,fl,100y bei erhöhter Temperatur

Anhang C6

Appendix 24 / 24