



DA

#### **YDEEVNEDEKLARATION**

#### DoP W0003

til fischer PowerFast skruer og fischer konstruktionsskruer

DoP W0003

1. Varetypens unikke identifikationskode:

2. Anvendelsesformål: Selvborende skruer til brug i trækonstruktioner, se appendiks, specifikt Bilage 1, 2.

3. Fabrikant: fischerwerke GmbH & Co. KG, Klaus-Fischer-Str. 1, 72178 Waldachtal, Tyskland

4. Bemyndiget repræsentant:

5. System(er) til vurdering og kontrol af konstansen af

vdeevnen:

6. Europæisk vurderingsdokument: EAD 130118-00-0603 Europæisk Teknisk Vurdering ETA-11/0027; 2019-01-02 Teknisk vurderingsorgan: ETA-Danmark A/S

Notificeret organ(er) 0769 Karlsruher Institut für Technologie (KIT)

3

7. Deklareret ydeevne(r):

Mekanisk modstand og stabilitet (BWR 1), Sikkerhed og tilgængelighed ved anvendelse (BWR 4)

Bilag 12-31 Dimensioner: Karakteristisk flydemoment: Bilag 5 Bilag 1 Bøjningsvinkel: Karakteristisk udtræksparameter: Bilag 5,6 Bilag 6 Karakteristisk hoved udtræksparameter: Karakteristisk trækstyrke: Bilag 3 Karakteristisk flydespænding: Bilag 7 Karakteristisk drejningsstyrke: Bilag 3 Iskruningsmoment: Bilag 3 Kant og indbyrdes afstand på skruen og min. tykkelse på træmateriale: Bilag 9,10,38

Glidemodul for specielt, aksialt belastede skruer: Bilag 7

Holdbarhed mod korrosion: Bilag 1,2,8-10,12-31

Brandbeskyttelse (BWR 2)

Brandegenskaber: Klasse (A1)

8. Relevant teknisk dokumentation og/eller specifik teknisk dokumentation:

Ydeevnen for den vare, der er anført ovenfor, er i overensstemmelse med den deklarerede ydeevne. Denne ydeevnedeklaration er udarbejdet i overensstemmelse med forordning (EU) nr. 305/2011 på eneansvar af den fabrikant, der er anført ovenfor.

Underskrevet for fabrikanten og på dennes vegne af:

Dr.-Ing. Oliver Geibig. Administrerende direktør Forretningsenheder og ingenjørarbeide

Jürgen Grün, Administrerende direktør Kemi & Kvalitet

Tumlingen, 2021-01-16

Denne DoP er tilgængelig i forskellige sprogversioner. I tilfælde af fortolkningsmæssig uoverensstemmelse, henvises der til den engelske version, som altid er

Appendikset indeholder frivillige og udvidede informationer på engelsk. Disse overgår de lokale (sprogneutrale) retslige krav.

Fischer DATA DOP\_W\_BUHolz\_V6.xlsm

1/1

## II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

# 1 Technical description of product and intended use

#### Technical description of the product

"fischer Power-Fast" and "fischer construction screws" are self-tapping screws to be used in timber structures. "fischer Power-Fast" screws shall be threaded over a part or over the full length. "fischer construction screws" shall be threaded over a part of the length. The screws shall be produced from carbon steel wire for nominal diameters of 3,0 mm to 12,0 mm and from stainless steel wire for nominal diameters of 3,0 mm to 8,0 mm. The material specification of the stainless steel screws is deposited with ETA-Danmark. Where corrosion protection is required, the material or coating shall be declared in accordance with the relevant specification given in Annex A of EN 14592.

#### **Geometry and Material**

The nominal diameter (outer thread diameter), d, shall not be less than 3,0 mm and shall not be greater than 12,0 mm. The overall length, L, of screws shall not be less than 20 mm and shall not be greater than 600 mm. Other dimensions are given in Annex A1 to Annex A19.

The ratio of inner thread diameter to outer thread diameter  $d_i/d$  ranges from 0,59 to 0,69.

The screws are threaded over a minimum length  $\ell_g$  of 4,0·d (i.e.  $\ell_g \ge 4,0$ ·d).

The lead p (distance between two adjacent thread flanks) ranges from 0,50·d to 0,67·d.

No breaking of screws shall be observed at a bend angle,  $\alpha$ , of less than  $(45/d^{0.7} + 20)$  degrees.

The material specification of the of the stainless steel screws is deposited with ETA-Danmark.

# 2 Specification of the intended use in accordance with the applicable EAD

The screws are used for connections in load bearing timber structures between members of solid timber (softwood and hardwood). Furthermore, all kinds of processed timber products (all softwood and hardwood as well), such as glued laminated timber, cross-laminated timber, laminated veneer lumber, similar glued members, wood-based panels or steel.

Furthermore "fischer Power-Fast" screws with diameter of 6 mm, 8 mm, 10 mm and 12 mm may also be used for the fixing of heat insulation on rafters and on vertical facades.

Steel plates and wood-based panels except solid wood panels, Egger OSB Eurostrand 4 TOP and cross laminated timber shall only be located on the side of the screw head. The following wood-based panels may be used:

- Plywood according to EN 636 or ETA
- Particleboard according to EN 312 or ETA
- Oriented Strand Board, Type OSB/3 and OSB/4 according to EN 300 or ETA
- Fibreboard according to EN 622-2 and 622-3 or ETA (minimum density 650 kg/m³)
- Cement bonded particleboard according to ETA
- Solid wood panels according to EN 13353 and EN 13986, and cross laminated timber according to ETA
- Laminated Veneer Lumber according to EN 14374 or ETA
- Engineered wood products according to ETA if the ETA of the product includes provisions for the use of self-tapping screws, the provisions of the ETA of the engineered wood product apply

The screws shall be screwed into softwood without predrilling or after pre-drilling with a diameter not larger than the inner thread diameter for the length of the threaded part and with a maximum of the smooth shank diameter for the length of the smooth shank. The screws shall be driven into hardwood after pre-drilling with a suitable diameter according to section 3.11.

The screws are intended to be used in timber connections for which requirements for mechanical resistance and stability and safety in use in the sense of the Basic Works Requirements 1 and 4 of Regulation 305/2011 shall be fulfilled.

Form and dimensions of washers are given in Annex A20. Washers must be made of steel.

The design of the connections shall be based on the characteristic load-carrying capacities of the screws. The design capacities shall be derived from the characteristic capacities in accordance with Eurocode 5 or an appropriate national code (e.g. DIN 1052:2008-12). Regarding environmental conditions, national provisions at the building site shall apply.

The screws are intended for use for connections subject to static or quasi static loading.

The zinc-coated screws are for use in timber structures subject to the dry, internal conditions defined by the service classes 1 and 2 of EN 1995-1-1:2008 (Eurocode 5).

The screws made of stainless steel meet the requirements of Eurocode 5 (EN 1995-1-1:2008), for use in structures subject to the wet conditions defined as service class 3.

The scope of the screws regarding resistance to corrosion shall be defined according to national provisions that apply at the installation site considering environmental conditions.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the screws of 50 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

# 3 Performance of the product and references to the methods used for its assessment

| Char | acteristic                                     | Assessment of characteristic                                                                                                                                                                                                                                                               |
|------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.1  | Mechanical resistance and stability*) (BWR1)   |                                                                                                                                                                                                                                                                                            |
|      | Tensile strength Screws made from carbon steel | Characteristic value f <sub>tens,k</sub> :  Screw d = 3,0 mm: 2,7 kN  Screw d = 3,5 mm: 3,7 kN  Screw d = 4,0 mm: 4,8 kN  Screw d = 4,5 mm: 6,0 kN  Screw d = 5,0 mm: 7,5 kN  Screw d = 6,0 mm: 10,7 kN  Screw d = 8,0 mm: 19,1 kN  Screw d = 10,0 mm: 29,8 kN  Screw d = 12,0 mm: 32,7 kN |
|      | Screws from stainless steel                    | Screw d = 3,0 mm: 1,6 kN<br>Screw d = 3,5 mm: 2,1 kN<br>Screw d = 4,0 mm: 2,8 kN<br>Screw d = 4,5 mm: 3,5 kN<br>Screw d = 5,0 mm: 4,3 kN<br>Screw d = 6,0 mm: 6,2 kN<br>Screw d = 8,0 mm: 13,0 kN                                                                                          |
|      | Insertion moment                               | Ratio of the characteristic torsional strength to the mean insertion moment: $f_{tor,k} \ / \ R_{tor,mean} \ge 1,5$                                                                                                                                                                        |
|      | Torsional strength Screws from carbon steel    | Characteristic value f <sub>tor,k</sub> :  Screw d = 3,0 mm: 1,3 Nm  Screw d = 3,5 mm: 2,0 Nm  Screw d = 4,0 mm: 3,0 Nm  Screw d = 4,5 mm: 4,3 Nm  Screw d = 5,0 mm: 6,0 Nm  Screw d = 6,0 mm: 9,5 Nm  Screw d = 8,0 mm: 25,0 Nm  Screw d = 10,0 mm: 40,0 Nm  Screw d = 12,0 mm: 55,0 Nm   |
|      | Screws from stainless steel                    | Screw d = 3,0 mm: 0,9 Nm<br>Screw d = 3,5 mm: 1,3 Nm<br>Screw d = 4,0 mm: 1,9 Nm<br>Screw d = 4,5 mm: 2,6 Nm<br>Screw d = 5,0 mm: 3,7 Nm<br>Screw d = 6,0 mm: 6,5 Nm<br>Screw d = 8,0 mm: 16,0 Nm                                                                                          |
| 3.2  | Safety in case of fire (BWR2)                  |                                                                                                                                                                                                                                                                                            |
|      | Reaction to fire                               | The screws are made from steel classified as <b>Euroclass A1</b> in accordance with EN 13501-1 and Commission Delegated Regulation 2016/364.                                                                                                                                               |

| Char | racteristic                                                                                           | Assessment of characteristic                                                                                                                                                                                                                                    |  |  |  |  |  |  |
|------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 3.7  | Sustainable use of natural resources (BR7)  General aspects related to the performance of the product | No Performance Assessed  The screws have been assessed as having satisfactory durability and serviceability when used in timber structures using the timber species described in Eurocode 5 and subject to the conditions defined by service classes 1, 2 and 3 |  |  |  |  |  |  |
|      | Identification                                                                                        | See Annex A                                                                                                                                                                                                                                                     |  |  |  |  |  |  |

<sup>\*)</sup> See additional information in section 3.9 – 3.12.

\*\*) In addition to the specific clauses relating to dangerous substances contained in this European technical Assessment, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Regulation, these requirements need also to be complied with, when and where they apply.

#### 3.9 Mechanical resistance and stability

The load-carrying capacities for "fischer Power-Fast" and "fischer construction screws" are applicable to the wood-based materials mentioned in paragraph 1 even though the term timber has been used in the following.

The characteristic lateral load-carrying capacities and the characteristic axial withdrawal capacities of "fischer Power-Fast" and "fischer construction screws" screws should be used for designs in accordance with Eurocode 5 or an appropriate national code.

Pointside penetration length of the threaded part must be  $\ell_{\rm ef} \ge 4 \cdot d$ , where d is the outer thread diameter of the screw. For the fixing of rafters, point side penetration must be at least 40 mm,  $\ell_{\rm ef} > 40$  mm.

ETA's for structural members may be considered if applicable.

For wood-based panels the relevant ETAs must be considered where applicable.

#### Lateral load-carrying capacity

The characteristic lateral load-carrying capacity of "fischer Power-Fast" and "fischer construction screws" screws shall be calculated according to EN 1995-1-1:2008 (Eurocode 5) using the outer thread diameter d as the nominal diameter of the screw. The contribution from the rope effect may be considered.

The characteristic yield moment shall be calculated from:

Screws from carbon steel for 3,0 mm  $\leq$  d  $\leq$  5,0 mm and 12,0 mm:

$$M_{y,k} = 0.15 \cdot 500 \text{ (N/mm}^2) \cdot d^{2.6}$$
 [Nmm]

Screws from carbon steel for 6,0 mm  $\leq$  d  $\leq$  10,0 mm:  $M_{y,k} = 0.15 \cdot 600 \; (N/mm^2) \cdot d^{2,6} \qquad \qquad [Nmm]$ 

Screws from stainless steel for 3,0 mm < d < 6,0 mm:  $M_{v,k} = 0.15 \cdot 350 \text{ (N/mm}^2) \cdot d^{2.6}$  [Nmm]

Screws from stainless steel for d = 8,0 mm:  $M_{y,k} = 0.15 \cdot 400 \; (N/mm^2) \cdot d^{2.6} \eqno [Nmm]$ 

where

d outer thread diameter [mm]

The embedding strength for screws in non-pre-drilled holes arranged at an angle between screw axis and grain direction,  $0^{\circ} \le \alpha \le 90^{\circ}$  is:

$$f_{h,k} = \frac{0.082 \cdot \rho_k \cdot d^{-0.3}}{2.5 \cdot \cos^2 \alpha + \sin^2 \alpha}$$
 [N/mm<sup>2</sup>]

and accordingly, for screws in pre-drilled holes:

$$f_{h,k} = \frac{0.082 \cdot \rho_k \cdot (1 - 0.01 \cdot d)}{2.5 \cdot \cos^2 \alpha + \sin^2 \alpha}$$
 [N/mm<sup>2</sup>]

Where

 $\rho_k$  characteristic timber density [kg/m<sup>3</sup>];

d outer thread diameter [mm];

α angle between screw axis and grain direction.

The embedding strength for screws arranged parallel to the plane surface of cross laminated timber, independent of the angle between screw axis and grain direction,  $0^{\circ} \le \alpha \le 90^{\circ}$ , may be calculated from:

$$f_{h,k} = 20 \cdot d^{-0,5} \end{[N/mm^2]}$$

Where

d outer thread diameter [mm]

The embedding strength for screws in the plane surface of cross laminated timber should be assumed as for solid timber based on the characteristic density of the outer layer. If relevant, the angle between force and grain direction of the outer layer should be taken into account.

The direction of the lateral force shall be perpendicular to the screw axis and parallel to the plane surface of the cross laminated timber.

#### Axial withdrawal capacity

The characteristic axial withdrawal capacity of "fischer Power-Fast" and "fischer construction screws" in solid timber (softwood and ash, beech or oak hardwood), glued laminated timber (softwood and hardwood, ash, beech or oak), laminated veneer lumber (softwood or hardwood beech) or cross-laminated timber members at an angle of  $0^{\circ} \leq \alpha \leq 90^{\circ}$  to the grain or in Egger Eurostrand OSB 4 TOP at an angle of  $\alpha = 90^{\circ}$  to the panel surface shall be calculated from:

$$F_{ax,\alpha,Rk} = n_{ef} \cdot k_{ax} \cdot f_{ax,k} \cdot d \cdot \ell_{ef} \cdot \left(\frac{\rho_k}{350}\right)^{0.8}$$
 [N]

Where

 $F_{ax,\alpha,RK}$  Characteristic withdrawal capacity of the connection at an angle  $\alpha$  to the grain [N]

n<sub>ef</sub> Effective number of screws according to EN 1995-1-1

For inclined screws:  $n_{ef} = max \{ n^{0.9} ; 0.9 \cdot n \}$ 

 $k_{ax}$  Factor, taking into account the angle  $\alpha$  between screw axis and grain direction  $k_{ax}=1,0 \text{ for } 45^{\circ} \leq \alpha < 90^{\circ}$ 

$$k_{ax} = 0.3 + \frac{0.7 \cdot \alpha}{45}$$
 for  $0^{\circ} \le \alpha \le 45^{\circ}$ 

 $f_{ax,k}$  Characteristic withdrawal parameter [N/mm<sup>2</sup>] for timber members

for Egger Eurostrand OSB 4 TOP with minimum thickness t = 12 mm: screw 5,0 mm  $\leq d \leq 10,0$  mm:

 $f_{ax,k} = 10,0 \text{ N/mm}^2$ 

d Outer thread diameter [mm]

 $\ell_{\rm ef}$  Point side penetration length of the threaded part according to EN 1995-1-1:2008 [mm]

α Angle between grain and screw axis [°]

 $\rho_k$  Characteristic density [kg/m³], for hardwoods the assumed characteristic density shall not exceed 730 kg/m³

For screws arranged under an angle between screw axis and grain direction of less than 90°, the minimum threaded penetration length is:

 $\ell_{ef} \ge \min (4 \cdot d/\sin \alpha ; 20 \cdot d)$ 

For screws penetrating more than one layer of cross laminated timber, the different layers may be taken into account proportionally.

The axial withdrawal capacity is limited by the head pullthrough capacity and the tensile strength of the screw.

For axially loaded screws in tension, where the external force is parallel to the screw axes, the rules in EN 1995-1-1, 8.7.2 (8) should be applied.

For inclined screws in timber-to-timber or steel-to-timber shear connections, where the screws are arranged under an angle  $30^{\circ} \le \alpha \le 60^{\circ}$  between the shear plane and the screw axis, the effective number of screws  $n_{ef}$  should be determined as follows:

For one row of n screws parallel to the load, the load-carrying capacity should be calculated using the effective number of fasteners nef, where

$$n_{ef} = max \{n^{0.9}; 0.9 \cdot n\}$$

and n is the number of inclined screws in a row. If crossed pairs of screws are used in timber-to-timber connections, n is the number of crossed pairs of screws in a row.

Note: For inclined screws as fasteners in mechanically

jointed beams or columns or for the fixing of thermal insulation material,  $n_{ef} = n$ .

#### Head pull-through capacity

The characteristic head pull-through capacity of "fischer Power-Fast" and "fischer construction screws" shall be calculated according to EN 1995-1-1:2008 from:

$$F_{ax,\alpha,Rk} = n_{ef} \cdot f_{head,k} \cdot d_h^2 \cdot \left(\frac{\rho_k}{350}\right)^{0.8}$$
 [N]

where:

 $F_{ax,\alpha,Rk}$  characteristic head pull-through capacity of the connection at an angle  $\alpha \ge 30^{\circ}$  to the grain [N]

n<sub>ef</sub> effective number of screws according to EN 1995-1-1

For inclined screws:  $n_{ef} = max \{n^{0.9}; 0.9 \cdot n\}$ 

(see axial withdrawal capacity)

 $\begin{array}{c} f_{\text{head},k} & \text{characteristic head pull-through parameter} \\ & \lceil N/mm^2 \rceil \end{array}$ 

d<sub>h</sub> diameter of the screw head [mm]

 $\rho_k$  characteristic density [kg/m<sup>3</sup>], for wood-

based panels  $\rho_k = 380 \text{ kg/m}^3$ 

Characteristic head pull-through parameter for screws with head diameter  $\leq 21$  mm in connections with timber and with wood-based panels with thicknesses above 20 mm:  $f_{head,k} = 12 \text{ N/mm}^2$ 

Characteristic head pull-through parameter for screws with head diameter 21 mm < d<sub>h</sub>  $\le$  35 mm in connections with timber and with wood-based panels with thicknesses above 20 mm:

 $f_{head,k} = 10 \text{ N/mm}^2$ 

Characteristic head pull-through parameter for screws in connections with wood-based panels with thicknesses between 12 mm and 20 mm:

 $f_{head,k} = 8 \text{ N/mm}^2$ 

Screws in connections with wood-based panels with a thickness below 12 mm (minimum thickness of the wood based panels of 1,2·d with d as outer thread diameter):

 $f_{head,k} = 8 \text{ N/mm}^2$ 

limited to  $F_{ax,\alpha,Rk} = 400 \text{ N}$ 

The head diameter  $d_h$  shall be greater than  $1.8 \cdot d_s$ , where  $d_s$  is the smooth shank or the wire diameter. Otherwise the characteristic head pull-through capacity  $F_{ax,\alpha,Rk} = 0$ .

Outer diameter of washers  $d_h > 35$  mm shall not be considered.

The minimum thickness of wood-based panels according to the clause 3.9 must be observed.

In steel-to-timber connections the head pull-through capacity is not decisive.

#### **Tensile capacity**

The characteristic tensile strength  $f_{tens,k}$  of "fischer Power-Fast" and "fischer construction screws" is:

#### Screws from carbon steel:

| Screw $d = 3.0 \text{ mm}$ : | 2,7  kN |
|------------------------------|---------|
| Screw $d = 3.5 \text{ mm}$ : | 3,7  kN |
| Screw $d = 4.0$ mm:          | 4,3 kN  |
| Screw $d = 4.5 \text{ mm}$ : | 5,5 kN  |
| Screw $d = 5.0$ mm:          | 6,8 kN  |
| Screw $d = 6.0 \text{ mm}$ : | 10,7 kN |
| Screw $d = 8.0 \text{ mm}$ : | 19,1 kN |
| Screw $d = 10,0$ mm:         | 29,8 kN |
| Screw $d = 12,0$ mm:         | 32,7 kN |

#### Screws from stainless steel:

| Screw $d = 3.0 \text{ mm}$ : | 1,6 kN  |
|------------------------------|---------|
| Screw $d = 3.5 \text{ mm}$ : | 2,1 kN  |
| Screw $d = 4.0 \text{ mm}$ : | 2,8 kN  |
| Screw $d = 4.5 \text{ mm}$ : | 3,5 kN  |
| Screw $d = 5.0$ mm:          | 4,3 kN  |
| Screw $d = 6.0$ mm:          | 6,2 kN  |
| Screw $d = 8.0 \text{ mm}$ : | 13,0 kN |

For screws used in combination with steel plates, the tearoff capacity of the screw head should be greater than the tensile strength of the screw.

#### **Compressive capacity**

The characteristic compressive capacity  $F_{ax,Rk}$  of fischer Power-Fast screws with the head fixed between two aluminium-, carbon steel- or stainless steel plates according to Annex D and the thread driven completely into timber perpendicular to the grain shall be calculated from:

$$F_{ax,Rk} = min \left\{ f_{ax,k} \cdot d \cdot \ell_{ef} \cdot \left( \frac{\rho_k}{350} \right)^{0,8} ; \kappa_c \cdot N_{pl,k} \right\} [N]$$

Where

$$\kappa_c \ = \begin{cases} 1 & \text{for } \overline{\lambda}_k \leq 0, 2 \\ \frac{1}{k + \sqrt{k^2 - \overline{\lambda}_k^2}} & \text{for } \overline{\lambda}_k > 0, 2 \end{cases}$$

$$k = 0.5 \cdot \left\lceil 1 + 0.49 \cdot (\overline{\lambda}_k - 0.2) + \overline{\lambda}_k^2 \right\rceil$$

The relative slenderness ratio shall be calculated from:

$$\overline{\lambda}_{k} = \sqrt{\frac{N_{pl,k}}{N_{ki,k}}}$$

Where

$$N_{pl,k} = \pi \cdot \frac{d_s^2}{4} \cdot f_{y,k}$$
 [N]

is the characteristic value for the axial capacity in case of plastic analysis referred to the smooth shank cross-section.

$$N_{ki,k} = \frac{\pi^2 \cdot EI_S}{\ell_{ef}^2}$$
 [N]

is the characteristic ideal elastic buckling load.

Characteristic yield strength for screws made of carbon steel:

$$f_{y,k} = 1000 \qquad [N/mm^2]$$

Characteristic yield strength for screws made of stainless steel:

$$f_{y,k} = 500 \qquad [N/mm^2]$$

Modulus of elasticity for screws made of carbon steel:

$$E_s = 210000$$
 [N/mm<sup>2</sup>]

Modulus of elasticity for screws made of stainless steel:  

$$E_s = 160000$$
 [N/mm<sup>2</sup>]

Second moment of area:

$$I_{S} = \frac{\pi}{64} \cdot d_{s}^{4}$$
 [mm<sup>4</sup>] 
$$d_{s} = \text{smooth shank diameter}$$
 [mm]

$$\ell_{\rm ef} = 0.7 \cdot \ell$$
 buckling length [mm]

free screw length protruding from the timber member including the screw head [mm]

Note: When determining design values of the compressive capacity it should be considered that  $f_{ax,d}$  is to be calculated using  $k_{mod}$  and  $\gamma_M$  for timber according to EN 1995 while  $N_{pl,d}$  is calculated using  $\gamma_{M,1}$  for steel buckling according to EN 1993.

#### Combined laterally and axially loaded screws

For screwed connections subjected to a combination of axial load and lateral load, the following expression should be satisfied:

$$\left(\frac{F_{ax,Ed}}{F_{ax,Rd}}\right)^2 + \left(\frac{F_{la,Ed}}{F_{la,Rd}}\right)^2 \leq 1$$

where

 $\begin{aligned} F_{ax,Ed} & \text{axial design load of the screw} \\ F_{la,Ed} & \text{lateral design load of the screw} \end{aligned}$ 

F<sub>ax,Rd</sub> design load-carrying capacity of an axially

loaded screw

F<sub>la,Rd</sub> design load-carrying capacity of a laterally

loaded screw

#### Slip modulus

The axial slip modulus  $K_{ser}$  of a screw for the serviceability limit state should be taken independent of angle  $\alpha$  to the grain as:

$$C = K_{ser} = 780 \cdot d^{0.2} \cdot \ell_{ef}^{0.4}$$
 [N/mm]

Where

d outer thread diameter [mm]

 $\ell_{\rm ef}$  penetration length in the structural member [mm]

#### Thermal insulation material on top of rafters

"fischer Power-Fast" screws with an outer thread diameter of d = 6 mm, 8 mm, 10 mm and 12 mm may be used for the fixing of thermal insulation material on top of rafters.

The thickness of the insulation ranges up to 400 mm. The rafter insulation must be placed on top of solid timber or glued laminated timber rafters or cross-laminated timber members and be fixed by battens placed parallel to the rafters or by wood-based panels on top of the insulation layer. The insulation of vertical facades is also covered by the rules given here.

Screws must be screwed in the rafter through the battens or panels and the insulation without pre-drilling in one sequence.

The angle  $\alpha$  between the screw axis and the grain direction of the rafter should be between 30° and 90°.

The battens must be from solid timber (softwood) according to EN 338:2003-04. The minimum thickness of the battens is 80 mm and the minimum width 100 mm for screws with outer thread diameter d=12 mm. The minimum thickness of the battens is 40 mm and the minimum width 60 mm for screws with outer thread diameter d=10 mm. For screws with outer thread diameter d=6 mm and 8 mm the minimum thickness of the battens is 30 mm and the minimum width 50 mm.

Alternatively, to the battens, boards with a minimum thickness of 20 mm from plywood according to EN 636, particle board according to EN 312, oriented strand board OSB/3 and OSB/4 according to EN 300 or ETA and solid wood panels according to EN 13353 may be used.

The rafter consists of solid timber (softwood) according to EN 338, glued laminated timber according to EN 14081, cross-laminated timber, laminated veneer lumber according to EN 14374 or to ETA or similar glued members according to ETA and has a minimum width of 60 mm.

The insulation must comply with a ETA.

The insulation must have a minimum compressive stress of  $\sigma_{10\%} = 0.05 \text{ N/mm}^2$  at 10 % deformation according to EN 826:1996-05.

The analysis of the fixing of the insulation and battens or boards, respectively, may be carried out using the static model in Annex B. The battens or boards, respectively, must have sufficient strength and stiffness. The maximum pressure between the battens or boards, respectively, and the insulation shall not exceed  $1,1\cdot\sigma_{10\%}$ .

The characteristic axial withdrawal capacity of the screws for rafter or facade insulation shall be calculated from:

$$F_{ax,\alpha,Rk} = min \begin{cases} k_{ax} \cdot f_{ax,k} \cdot d \cdot \ell_{ef} \cdot k_{1} \cdot k_{2} \left(\frac{\rho_{k}}{350}\right)^{0.8} \\ f_{head,k} \cdot d_{h}^{2} \cdot \left(\frac{\rho_{k}}{350}\right)^{0.8} \end{cases}$$

$$[N]$$

$$f_{tens,d}$$

where

 $F_{ax,\alpha,RK}$  Characteristic withdrawal capacity of the connection at an angle  $\alpha$  to the grain [N]

 $k_{ax}$  Factor, taking into account the angle  $\alpha$  between screw axis and grain direction

 $k_{ax}$  = 1,0 for  $45^{\circ} \le \alpha < 90^{\circ}$ 

$$k_{ax}=~0,3+\frac{0,7\cdot\alpha}{45}~~for~0^{\circ}\leq\alpha<45^{\circ}$$

 $f_{ax,k}$  Characteristic withdrawal parameter  $\lceil N/mm^2 \rceil$ 

D Outer thread diameter [mm]

Point side penetration length of the threaded part according to EN 1995-1-1:2008 [mm]

 $\alpha$  Angle between grain and screw axis ( $\alpha \ge 30^{\circ}$ )

 $k_1 \quad \min\{1; 220/t_{HI}\}$ 

 $k_2 \quad \min\{1; \sigma_{10\%}/0,12\}$ 

t<sub>HI</sub> Thickness of the thermal insulation [mm]

 $\sigma_{10\%}$  Compressive stress of the thermal insulation

under 10 % deformation [N/mm<sup>2</sup>]

 $\sigma_{10\%} \ge 0.05 \text{ N/mm}^2$ 

 $f_{\text{head},k} \qquad \text{Characteristic head pull-through parameter}$ 

 $[N/mm^2]$ 

d<sub>h</sub> Outer diameter of the screw head [mm]

ρ<sub>k</sub> Characteristic density [kg/m³]

 $f_{tens,d}$  Characteristic tensile capacity of the screw

[N]

Friction forces shall not be considered for the design of the characteristic axial withdrawal capacity of the screws.

The anchorage of wind suction forces as well as the bending stresses of the battens or the boards, respectively, shall be considered in design. Additional screws perpendicular to the grain of the rafter (angle  $\alpha = 90^{\circ}$ ) may be arranged if necessary.

Screws for the anchorage of rafter insulation shall be arranged according to Annex B.

The maximum screw spacing is  $e_S = 1,75$  m.

#### 3.10 Aspects related to the performance of the product

3.10.1 Corrosion protection in service class 1, 2 and 3. The fischer Power-Fast and fischer construction screws are produced from carbon wire. Screws made from carbon steel

are electrogalvanised and yellow or blue chromate. The mean thickness of the zinc coating is  $5\mu m$ .

The material specification of the stainless steel screws is deposited with ETA-Danmark.

# 3.11 General aspects related to the intended use of the product

The screws are manufactured in accordance with the provisions of the European Technical Assessment using the automated manufacturing process and laid down in the technical documentation.

The installation shall be carried out in accordance with Eurocode 5 or an appropriate national code unless otherwise is defined in the following. Instructions from fischerwerke GmbH & Co. KG should be considered for installation.

The screws are used for connections in load bearing timber structures between members of solid timber (softwood and hardwood), glued laminated timber (softwood and hardwood), cross-laminated timber (minimum diameter d = 6,0 mm, softwood and hardwood), laminated veneer lumber (softwood and hardwood), similar glued members (softwood and hardwood), wood-based panels or steel members.

The screws may be used for connections in load bearing timber structures with structural members according to an associated ETA, if according to the ETA of the structural member a connection in load bearing timber structures with screws according to an ETA is allowed.

Furthermore, the screws with diameters between 6 mm and 12 mm may also be used for the fixing of insulation on top of rafters or at vertical facades.

A minimum of two screws should be used for connections in load bearing timber structures. A single screw may be used in structural connections if the penetration length of the screw including an unthreaded part of the shank is at least  $20 \cdot d$  and the screw is only axially loaded. The load-bearing capacity of the single screw in this case shall be reduced by 50 %.

A single screw per connection may also be used, if the member is fixed with at least two screws and the screws are used for the fixing of boards, battens and wind braces, or for the fixing of rafters, purlins or similar on main beams or top plates.

The minimum penetration depth in structural members made of solid, glued or cross-laminated timber is 4·d.

Wood-based panels - except Egger Eurostrand OSB 4 TOP - and steel plates should only be arranged on the side of the

screw head. The minimum thickness of wood-based panels should be 1,2·d. Furthermore, the minimum thickness for following wood-based panels should be:

- Plywood, Fibreboards: 6 mm
- Particleboards, OSB, Cement Particleboards: 8 mm
- Solid wood panels: 12 mm

For structural members according to ETA's the terms of the ETA's must be considered.

If screws with an outer thread diameter  $d \ge 8$  mm are used in load bearing timber structures, the structural solid or glued laminated timber, laminated veneer lumber and similar glued members must be from spruce, pine or fir. This does not apply for screws in pre-drilled holes.

The minimum angle between the screw axis and the grain direction is  $\alpha = 0^{\circ}$ .

The screws shall be driven into softwood without predrilling or after pre-drilling. The screws shall be driven into hardwood with a maximum characteristic density of 730 kg/m³ after predrilling.

The drill hole diameters are:

| Outer thread | Drill hole diameter |          |  |  |  |  |  |  |
|--------------|---------------------|----------|--|--|--|--|--|--|
| diameter     | Softwood            | Hardwood |  |  |  |  |  |  |
| 4,0          | 2,5                 | 3,0      |  |  |  |  |  |  |
| 4,5          | 2,5                 | 3,0      |  |  |  |  |  |  |
| 5,0          | 3,0                 | 3,0      |  |  |  |  |  |  |
| 6,0          | 4,0                 | 4,0      |  |  |  |  |  |  |
| 8,0          | 5,0                 | 6,0      |  |  |  |  |  |  |
| 10,0         | 6,0                 | 7,0      |  |  |  |  |  |  |
| 12,0         | 7,0                 | 8,0      |  |  |  |  |  |  |

The hole diameter in steel members must be predrilled with a suitable diameter.

Only the equipment prescribed by fischerwerke GmbH & Co. KG shall be used for driving the screws.

In connections with screws with countersunk head according to Annexes A1, A5, A6, A7, A11, A13 and A18, the head must be flush with the surface of the connected structural member. A deeper countersink is not allowed.

Screws from carbon steel and stainless steel with countersunk head according to Annex A1, A2, A5, A6, A7, A11, A13, A14 and A18 may be used together with washers according to Annex A20. Washers according to EN ISO 7094 may be used together with washers according to Annex A20.

Screws according to Annex A3, A4, A8, A9, A10, A12 A16, A17 and A19 may be used together with washers according to EN ISO 7094.

Washers from carbon steel should be used with screws from carbon steel and screws from stainless steel with washers from stainless steel. Washers should have a full bearing area.

For structural timber members, minimum spacing and distances for screws in predrilled holes are given in EN 1995-1-1:2008 (Eurocode 5) clause 8.3.1.2 and table 8.2 as for nails in predrilled holes. Here, the outer thread diameter d must be considered.

For screws in non-predrilled holes, minimum spacing and distances are given in EN 1995-1-1:2008 (Eurocode 5) clause 8.3.1.2 and table 8.2 as for nails in non-predrilled holes.

Alternatively, minimum distances and spacing for exclusively axially loaded "fischer Power-Fast" screws in non-predrilled holes in members of solid timber (softwood and hardwood), glued laminated timber or similar glued products (softwood and hardwood) with a minimum thickness  $t=12\cdot d$  and a minimum width of  $8\cdot d$  or 60 mm, whichever is the greater, may be taken as:

| Spacing a <sub>1</sub> parallel to the grain               | $a_1 = 5 \cdot d$     |
|------------------------------------------------------------|-----------------------|
| Spacing a <sub>2</sub> perpendicular to the grain          | $a_2 = 5 \cdot d$     |
| Distance a <sub>3,c</sub> from centre of the screw-part in |                       |
| timber to the end grain                                    | $a_{3,c} = 9 \cdot d$ |
| Distance a <sub>4,c</sub> from centre of the screw-part in |                       |
| timber to the edge                                         | $a_{4,c} = 4 \cdot d$ |

Spacing  $a_2$  perpendicular to the grain may be reduced from 5·d to 2,5·d, if the condition  $a_1 \cdot a_2 \ge 25 \cdot d^2$  is fulfilled.

For Douglas fir members minimum spacing and distances parallel to the grain shall be increased by 50%.

Minimum distances from loaded or unloaded ends must be  $15 \cdot d$  for screws in non-predrilled holes with outer thread diameter  $d \ge 8$  mm and timber thickness  $t < 5 \cdot d$ .

Minimum distances from the unloaded edge perpendicular to the grain may be reduced to  $3 \cdot d$  also for timber thickness  $t < 5 \cdot d$ , if the spacing parallel to the grain and the end distance is at least  $25 \cdot d$ .

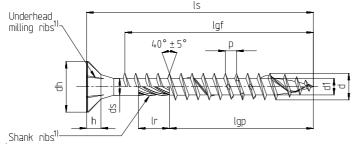
Unless specified otherwise in the technical specification (ETA or hEN) of cross laminated timber, minimum distances and spacing for screws in the plane surface of cross laminated timber members with a minimum thickness  $t = 10 \cdot d$  may be taken as (see Annex C):

| Spacing a <sub>1</sub> parallel to the grain               | $a_1 = 4 \cdot d$     |
|------------------------------------------------------------|-----------------------|
| Spacing a <sub>2</sub> perpendicular to the grain          | $a_2 = 2.5 \cdot d$   |
| Distance a <sub>3,c</sub> from centre of the screw-part in |                       |
| timber to the unloaded end grain of                        |                       |
| the plane surface                                          | $a_{3,c} = 6 \cdot d$ |
| Distance a <sub>3,t</sub> from centre of the screw-part in |                       |
| timber to the loaded end grain                             |                       |

| of the plane surface                                       | $a_{3,t} = 6 \cdot d$   |
|------------------------------------------------------------|-------------------------|
| Distance a <sub>4,c</sub> from centre of the screw-part in |                         |
| timber to the unloaded edge                                | $a_{4,c} = 2.5 \cdot d$ |
| Distance a <sub>4,t</sub> from centre of the screw-part in |                         |
| timber to the loaded edge                                  | $a_{4,t} = 6 \cdot d$   |

Unless specified otherwise in the technical specification (ETA or hEN) of cross laminated timber, minimum distances and spacing for screws in the edge surface of cross laminated timber members with a minimum thickness  $t = 10 \cdot d$  and a minimum penetration depth perpendicular to the edge surface of 10·d may be taken as (see Annex C): Spacing a<sub>1</sub> parallel to the CLT plane surface  $a_1 = 10 \cdot d$ Spacing a<sub>2</sub> perpendicular to the CLT plane surface  $a_2 = 4 \cdot d$ Distance a<sub>3,c</sub> from centre of the screw-part in timber to the unloaded end  $a_{3,c} = 7 \cdot d$ Distance a<sub>3,t</sub> from centre of the screw-part in timber to the loaded end  $a_{3,t} = 12 \cdot d$ Distance a<sub>4,c</sub> from centre of the screw-part in timber to the unloaded edge  $a_{4,c} = 3 \cdot d$ Distance a<sub>4,t</sub> from centre of the screw-part in timber to the loaded edge  $a_{4,t} = 6 \cdot d$ 

For a crossed screw couple the minimum spacing between the crossing screws is 1,5·d.


Minimum thickness for structural members is t=24 mm for screws with outer thread diameter d < 8 mm, t=30 mm for screws with outer thread diameter d=8 mm, t=40 mm for screws with outer thread diameter d=10 mm and t=80 mm for screws with outer thread diameter d=12 mm.

# 4 Attestation and verification of constancy of performance (AVCP)

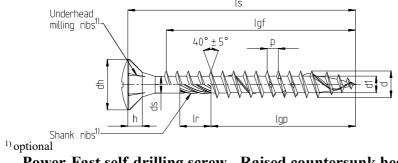
## 4.1 AVCP system

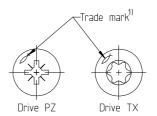
According to the decision 97/176/EC of the European Commission1, as amended, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 3.

#### Screw sizes and material






1) optional


Power-Fast self-drilling screw - Countersunk head with full- or partial thread

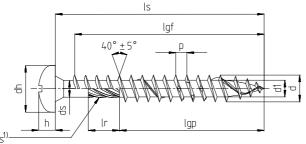
| N                               | minal dia        |                | 3,0               |                                                                                        | 2                 | 3,5      |                   | 4,0             |                   | 4,5             |                   | Λ        | 6                 | Λ            |   |          |
|---------------------------------|------------------|----------------|-------------------|----------------------------------------------------------------------------------------|-------------------|----------|-------------------|-----------------|-------------------|-----------------|-------------------|----------|-------------------|--------------|---|----------|
|                                 | Outer dian       |                | 3,00 3,50         |                                                                                        | _                 | , ,      |                   | <b>5,0</b> 5,00 |                   | <b>6,0</b> 6,00 |                   |          |                   |              |   |          |
| d                               | Allow. dev       |                | 3,                | 00                                                                                     | ٥,                | 30       | 4,00 4,50 ±0,30   |                 |                   |                 | ا, ر              | 50       | 0,                | 00           |   |          |
|                                 | Core diam        |                | 2                 | 00                                                                                     | 2                 | 20       | 2,50 2,70         |                 |                   | 3,0             | 00                | 4,00     |                   |              |   |          |
| $d_1$                           | Allow. deviation |                |                   |                                                                                        |                   |          | +0.10             |                 | ,                 | 70              |                   |          | ,20               |              |   |          |
|                                 | Head diam        |                | 6.                | 00                                                                                     |                   | 00       | 8,0               |                 | 9.0               | 00              | 10.               |          | <u> </u>          | ,00          |   |          |
| $d_h$                           | Allow. dev       | υ,             |                   |                                                                                        |                   |          |                   | +0,10           |                   | 10,             |                   |          | , , , ,           |              |   |          |
| ,                               | Shank diameter   |                |                   | 25                                                                                     | 2,                | 60       | 2,                |                 | 3,                |                 | 3,                | 50       | 4,                | 20           |   |          |
| $d_s$                           | Allow. dev       | iation         |                   |                                                                                        |                   |          |                   | -0,30 /         | +0,10             |                 |                   |          |                   |              |   |          |
| h                               | Head heigl       | nt             | 1,                | 90                                                                                     | 2,                | 10       | 2,:               |                 | 2,                |                 | 3,0               | 00       | 3,                | 80           |   |          |
| ,                               | Thread pit       |                | 1,                | 50                                                                                     | 1,                | 80       | 2,0               | 00              | 2,2               | 20              | 2,                | 50       | 3,00              | -4,50        |   |          |
| p                               | Allow. dev       |                |                   |                                                                                        |                   |          |                   | ±1              |                   |                 |                   |          |                   |              |   |          |
| $l_r^{1)}$                      | Shank ribs       |                | 3,                | 75                                                                                     |                   | 25       | 4,                | 75              | 5,:               | 50              | 6,                |          | 7,                | 00           |   |          |
| ır                              | Allow. dev       |                |                   |                                                                                        |                   | ,75      | 1                 |                 |                   |                 | ±1.               |          |                   |              |   |          |
|                                 | Drive TX         |                |                   | 10                                                                                     |                   |          |                   | 20              |                   |                 |                   | 25       | 30                |              |   |          |
|                                 | Drive P2         | ,              | ļ .               | 1 2 3                                                                                  |                   |          |                   |                 |                   |                 |                   |          |                   |              |   |          |
|                                 | Screw lengt      | h ls           | S                 | Standard thread length   $l_{gf}$ = Full thread   $l_{gp}$ =Partial thread   Tolerance |                   |          |                   |                 |                   |                 |                   | erance   | $: \pm 2,0$       | )2)          |   |          |
| Nomi                            | mın              | max            | $l_{\mathrm{gf}}$ | $l_{gp}$                                                                               | $l_{\mathrm{gf}}$ | $l_{gp}$ | $l_{\mathrm{gf}}$ | $l_{gp}$        | $l_{\mathrm{gf}}$ | $l_{gp}$        | $l_{\mathrm{gf}}$ | $l_{gp}$ | $l_{\mathrm{gf}}$ | $l_{\rm gp}$ |   |          |
| lengt                           | n                |                |                   | 1gp                                                                                    | _                 | 1gp      |                   | 1gp             | Ŭ                 | 1gp             | 1gī               | 1gp      | 1gī               | 1gp          |   |          |
| 20                              | 18,95            | 21,05          | 16                |                                                                                        | 16                | 4.0      | 16                | 10              | 16                |                 |                   |          |                   |              |   | <u> </u> |
| 25                              | 23,75            | 26,25          | 21                | 1.0                                                                                    | 21                | 18       | 20                | 18              | 20                | 1.0             | 2.4               |          |                   |              |   |          |
| 30                              | 28,75            | 31,25          | 26                | 18                                                                                     | 26                | 18       | 25                | 18              | 25                | 18              | 24                | 24       | 20                |              |   |          |
| 35<br>40                        | 33,50<br>38,50   | 36,50<br>41,50 | 31                | 24<br>24                                                                               | 31                | 24<br>24 | 30<br>35          | 24<br>24        | 30<br>35          | 24<br>24        | 29<br>34          | 24<br>24 | 28<br>33          | 24           |   | <u> </u> |
| 45                              | 43,50            | 46,50          | 41                | 30                                                                                     | 41                | 30       | 40                | 30              | 40                | 30              | 39                | 30       | 38                | 30           |   |          |
| 50                              | 48,50            | 51,50          | 41                | 30                                                                                     | 46                | 30       | 45                | 30              | 45                | 30              | 44                | 30       | 43                | 30           |   |          |
| 55                              | 53,50            | 56,50          |                   |                                                                                        | 70                | 30       | 50                | 36              | 50                | 36              | 49                | 36       | 48                | 30           |   |          |
| 60                              | 58,50            | 61,50          |                   |                                                                                        |                   |          | 30                | 36              | 30                | 36              | 17                | 36       | 53                | 36           |   |          |
| 70                              | 68,50            | 71,50          |                   |                                                                                        |                   |          |                   | 42              |                   | 42              |                   | 42       | 63                | 42           |   |          |
| 80                              | 78,50            | 81,50          |                   |                                                                                        |                   |          |                   | 50              |                   | 50              |                   | 50       | 73                | 50           |   |          |
| 90                              | 88,25            | 91,75          |                   |                                                                                        |                   |          |                   |                 |                   |                 |                   | 60       |                   | 60           |   |          |
| 100                             |                  | 101,75         |                   |                                                                                        |                   |          |                   |                 |                   |                 |                   | 60       |                   | 60           |   |          |
| 110                             |                  | 111,75         |                   |                                                                                        |                   |          |                   |                 |                   |                 |                   | 70       |                   | 70           |   |          |
| 120                             |                  |                |                   |                                                                                        |                   |          |                   |                 |                   |                 |                   | 70       |                   | 70           |   |          |
|                                 | in steps of 10   |                |                   |                                                                                        |                   |          |                   |                 |                   |                 |                   |          |                   |              |   |          |
| 130-300 $l_s$ -2,00 $l_s$ +2,00 |                  |                |                   |                                                                                        |                   |          |                   |                 |                   |                 |                   |          |                   | 70           | İ |          |

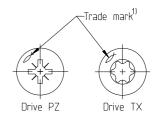
All sizes in mm

- Intermediate lengths at l<sub>s</sub> are possible
- Screws with partial thread > 50 mm length with shank ribs
- Threaded lengths between  $4 \times d \le l_g \le l_{gmax}$  are possible






Power-Fast self-drilling screw - Raised countersunk head with full- or partial thread


| Power-Fast self-drilling screw - Raised countersunk head with full- or partial thread |                   |                       |                |                   |                     |                   |           |                                           |              |                   |              |                   |              |                   |              |               |        |
|---------------------------------------------------------------------------------------|-------------------|-----------------------|----------------|-------------------|---------------------|-------------------|-----------|-------------------------------------------|--------------|-------------------|--------------|-------------------|--------------|-------------------|--------------|---------------|--------|
|                                                                                       |                   | steel<br>e surface ti | reatments: y   | ellow (           | or blue             | -zinc-p           | lated, b  | lue zinc                                  | -plated      | l≥12μn            | n, bonu      | s- zince          | ed, buri     | nished,           | nickel-      | /brass j      | plated |
| N                                                                                     | Nominal diameter  |                       |                |                   | 3,0                 |                   | 3,5       |                                           | 4,0          |                   | 4,5          |                   | ,0           | 6                 | ,0           |               |        |
| d                                                                                     | d Outer diameter  |                       |                | 3,                | 00                  | 3,                | 50        | 4,                                        | 00           | 4,5               | 50           | 5,0               | 00           | 6,                | 00           |               |        |
| u                                                                                     | Al                | low. devi             | ation          |                   |                     |                   | ±0,30     |                                           |              |                   |              |                   |              |                   |              |               |        |
| $d_1$                                                                                 |                   | Core diameter         |                |                   | 00                  | ,                 | 20        | ,                                         | 50           | 2,7               | 70           | 3,0               | 00           | 4,                | 00           |               |        |
| <b>u</b> 1                                                                            |                   | low. devi             |                |                   | -0,25 / +0,10 ±0,20 |                   |           |                                           |              |                   |              |                   |              |                   |              |               |        |
| $d_{\rm h}$                                                                           |                   | ead diame             |                | 6,                | 00                  | 7,                | 00        | 8,                                        | 00           | 9,0               | 00           | 10,               | ,00          | 12,               | ,00          |               |        |
| u <sub>h</sub>                                                                        |                   | low. devi             |                |                   |                     |                   |           |                                           |              | +0,10             |              |                   |              |                   |              |               |        |
| $d_s$                                                                                 |                   | ank diam              |                | 2,                | 25                  | 2,                | 60        |                                           | 90           | 3,2               |              | 3,                | 60           | 4,2               | 20           |               |        |
| us                                                                                    |                   | low. devi             |                |                   |                     |                   |           |                                           |              | +0,10             |              |                   |              |                   |              |               |        |
| h                                                                                     | Head height       |                       |                |                   | 90                  |                   | 10        |                                           | 50           | 2,7               |              |                   | 00           |                   | 40           |               |        |
| p                                                                                     |                   | read pitcl            |                | 1,                | 50                  | 1,                | 80        | 2,                                        | 00           | 2,2               | 20           | 2,                | 50           | 3,00-             | 4,50         | <u> </u>      |        |
| Р                                                                                     |                   | low. devi             |                |                   | ±10%                |                   |           |                                           |              |                   | T            |                   |              |                   | <u> </u>     |               |        |
| $1_{r}^{1}$                                                                           | Shank ribs length |                       | 3,             | 3,75 4,25         |                     | 4,                | 4,75 5,50 |                                           |              |                   | 00           | 7,00              |              |                   |              |               |        |
| -1                                                                                    |                   | low. devi             |                | ±0,75             |                     |                   |           |                                           |              | ±1,00             |              |                   | <u> </u>     |                   |              |               |        |
|                                                                                       |                   | Drive TX              |                | 10                |                     |                   | 20        |                                           |              | 20                | 25           | 30                |              |                   |              |               |        |
|                                                                                       |                   | Drive PZ              |                |                   | 1 2 3               |                   |           |                                           |              |                   |              |                   |              |                   |              |               |        |
|                                                                                       | Scr               | ew length             | l <sub>s</sub> | S                 | Standa              | d thre            | ad leng   | gth $  l_{gf} =$ Full thread $  l_{gp} =$ |              |                   |              | Partial           | thread       | d   Tole          | erance       | $\pm 2,0^{2}$ | 2)     |
| Nomi:                                                                                 |                   | min                   | max            | $l_{\mathrm{gf}}$ | $l_{\rm gp}$        | $l_{\mathrm{gf}}$ | $l_{gp}$  | $l_{\mathrm{gf}}$                         | $l_{\rm gp}$ | $l_{\mathrm{gf}}$ | $l_{\rm gp}$ | $l_{\mathrm{gf}}$ | $l_{\rm gp}$ | $l_{\mathrm{gf}}$ | $l_{\rm gp}$ |               |        |
| 20                                                                                    |                   | 18,95                 | 21,05          | 16                |                     | 16                |           | 16                                        |              | 16                |              |                   |              |                   |              |               |        |
| 25                                                                                    |                   | 23,75                 | 26,25          | 21                |                     | 21                | 18        | 20                                        | 18           | 20                |              |                   |              |                   |              |               |        |
| 30                                                                                    |                   | 28,75                 | 31,25          | 26                | 18                  | 26                | 18        | 25                                        | 18           | 25                | 18           | 24                |              |                   |              |               |        |
| 35                                                                                    |                   | 33,50                 | 36,50          | 31                | 24                  | 31                | 24        | 30                                        | 24           | 30                | 24           | 29                | 24           | 28                |              |               |        |
| 40                                                                                    | _                 | 38,50                 | 41,50          | 36                | 24                  | 36                | 24        | 35                                        | 24           | 35                | 24           | 34                | 24           | 33                | 24           |               |        |
| 45                                                                                    |                   | 43,50                 | 46,50          | 41                | 30                  | 41                | 30        | 40                                        | 30           | 40                | 30           | 39                | 30           | 38                | 30           |               |        |
| 50                                                                                    | _                 | 48,50                 | 51,50          |                   |                     | 46                | 30        | 45                                        | 30           | 45                | 30           | 44                | 30           | 43                | 30           |               |        |
| 55                                                                                    |                   | 53,50                 | 56,50          |                   |                     |                   |           | 50                                        | 36           | 50                | 36           | 49                | 36           | 48                |              |               |        |
| 60                                                                                    |                   | 58,50                 | 61,50          |                   |                     |                   |           |                                           | 36           |                   | 36           |                   | 36           | 53                | 36           | <u> </u>      |        |
| 70                                                                                    |                   | 68,50                 | 71,50          |                   |                     |                   |           |                                           | 42           |                   | 42           |                   | 42           | 63                | 42           | <u> </u>      |        |
| 80 7                                                                                  |                   | 78,50                 | 81,50          |                   |                     |                   |           |                                           | 50           |                   | 50           |                   | 50           | 73                | 50           |               |        |

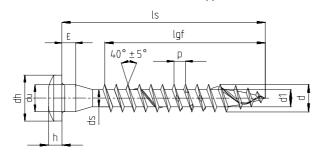
All sizes in mm

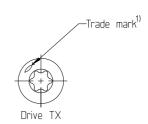
- Intermediate lengths at  $l_{\rm s}$  are possible
- Screws with partial thread > 50 mm length with shank ribs
- Threaded lengths between  $4\times d \leq l_g \leq l_{gmax}$  are possible

 $^{2)}~10mm \geq l_g \leq \!\! 18mm \triangleq \pm 1,\!5mm$  $18mm \geq l_g \leq 30mm \triangleq \pm 1{,}7mm$ 






Shank ribs<sup>1)</sup> optional


## Power-Fast self-drilling screw - Pan head with full- or partial thread

|              | bon steel<br>sible surface t | reatments:       |                   |                                                                                         | Ť                 |          |                   |          |                   |          |                   |          |                   |          | /brass p    | olated |
|--------------|------------------------------|------------------|-------------------|-----------------------------------------------------------------------------------------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|----------|-------------|--------|
| No           | minal dian                   | neter            | 3,0 3,5           |                                                                                         | 4                 | 4,0 4,5  |                   | ,5       | 5,0               |          | 6,0               |          |                   |          |             |        |
|              | Outer diam                   | eter             | 3,                | 00                                                                                      | 3,                | 50       | 4,                | 00       | 4,:               | 50       | 5,                | 00       |                   |          |             |        |
| d            | Allow. dev                   | iation           |                   |                                                                                         |                   |          |                   |          | ±0.               | ±0,30    |                   |          |                   |          |             |        |
|              | Core diame                   | ter              | 2,                | 00                                                                                      | 2,                | 20       | 2,                | 2,50     |                   | 2,70     |                   | 00       | 4,                | 00       |             |        |
| $d_1$        | Allow. dev                   | iation           |                   |                                                                                         |                   | -0,25    | +0,10             |          |                   |          |                   | $\pm 0$  | ,20               |          |             |        |
|              | Head diame                   | eter             | 6,                | 00                                                                                      | 7,                | 00       | 8,                | 00       | 9,0               | 00       | 10                | ,00      | 12                | ,00      |             |        |
| $d_h$        | Allow. dev                   |                  | -0,50 / +0,10     |                                                                                         |                   |          |                   |          |                   |          |                   |          |                   |          |             |        |
| d            | Shank diameter               |                  |                   | 25                                                                                      | 2,                | 60       | 2,                | 90       | 3,2               | 25       | 3,                | 60       | 4,                | 20       |             |        |
| $d_{s}$      | Allow. dev                   | iation           |                   |                                                                                         |                   |          |                   | -0,30 /  | '+0,10            |          |                   |          |                   |          |             |        |
| h            | Head heigh                   |                  |                   | 30                                                                                      |                   | 50       |                   | 90       |                   | 10       |                   | 40       | ,                 | 80       |             |        |
|              | Thread pitc                  |                  | 1,                | 50                                                                                      | 1,                | 80       | 2,                | 00       |                   | 20       | 2,                | 50       | 3,00              | -4,50    |             |        |
| р            | Allow. dev                   |                  |                   | ±10%                                                                                    |                   |          |                   |          |                   |          |                   |          |                   |          |             |        |
| $1_{r}^{1)}$ | Shank ribs length            |                  |                   | 3,75 4,25                                                                               |                   |          |                   | 75       | 5,                | 50       |                   | 00       | 7,                | 00       |             |        |
| ır           | Allow. deviation             |                  |                   |                                                                                         | ±0                | ,75      |                   |          |                   |          |                   | ,00      |                   |          |             |        |
|              | Drive TX                     |                  |                   | 1                                                                                       | 0                 |          |                   |          | .0                |          | 20                | 25       |                   | 0        |             |        |
|              | Drive PZ                     |                  |                   | [                                                                                       |                   |          |                   | 2        | 2                 |          |                   |          | 3                 | 3        |             |        |
|              | Screw lengtl                 | ı l <sub>s</sub> | S                 | Standard thread length   $l_{gf}$ = Full thread   $l_{gp}$ =Partial thread   Tolerance: |                   |          |                   |          |                   |          |                   |          |                   |          | $: \pm 2,0$ | 2)     |
| Nomina       | al min                       | may              | 1.                | 1                                                                                       | 1.                | 1        | 1.                | 1        | 1.                | 1        | 1.                | 1        | 1 .               | 1        |             |        |
| length       |                              | max              | $l_{\mathrm{gf}}$ | $l_{gp}$                                                                                | $l_{\mathrm{gf}}$ | $l_{gp}$ | $l_{\mathrm{gf}}$ | $l_{gp}$ | $l_{\mathrm{gf}}$ | $l_{gp}$ | $l_{\mathrm{gf}}$ | $l_{gp}$ | $l_{\mathrm{gf}}$ | $l_{gp}$ |             |        |
| 20           | 18,95                        | 21,05            | 16                |                                                                                         | 16                |          | 16                |          | 16                |          |                   |          |                   |          |             |        |
| 25           | 23,75                        | 26,25            | 21                |                                                                                         | 21                | 18       | 20                | 18       | 20                |          |                   |          |                   |          |             |        |
| 30           | 28,75                        | 31,25            | 26                | 18                                                                                      | 26                | 18       | 25                | 18       | 25                | 18       | 24                |          |                   |          |             |        |
| 35           | 33,50                        | 36,50            | 31                | 24                                                                                      | 31                | 24       | 30                | 24       | 30                | 24       | 29                | 24       | 28                |          |             |        |
| 40           | 38,50                        | 41,50            |                   | 24                                                                                      | 36                | 24       | 35                | 24       | 35                | 24       | 34                | 24       | 33                | 24       |             |        |
| 45           | 43,50                        | 46,50            |                   | 30                                                                                      |                   | 30       | 40                | 30       | 40                | 30       | 39                | 30       | 38                | 30       |             |        |
| 50           | 48,50                        | 51,50            |                   |                                                                                         |                   | 30       | 45                | 30       | 45                | 30       | 44                | 36       | 43                | 30       |             |        |
| 55           | 53,50                        | 56,50            |                   |                                                                                         |                   |          | 50                | 36       | 50                | 36       | 49                | 36       | 48                |          |             |        |
| 60           | 58,50                        | 61,50            |                   |                                                                                         |                   |          |                   | 36       |                   | 36       |                   | 42       | 53                | 36       |             |        |
| 70           | 68,50                        | 71,50            |                   |                                                                                         |                   |          |                   | 42       |                   | 42       |                   | 50       | 63                | 42       |             |        |
| 80           | 78,50                        | 81,50            |                   |                                                                                         |                   |          |                   | 50       |                   | 50       |                   | 50       | 73                | 50       |             |        |
| 90           | 88,25                        | 91,75            |                   |                                                                                         |                   |          |                   |          |                   |          |                   | 60       |                   | 60       |             |        |
| 100          | 98,25                        | 101,75           |                   |                                                                                         |                   |          |                   |          |                   |          |                   | 60       |                   | 60       |             |        |

All sizes in mm

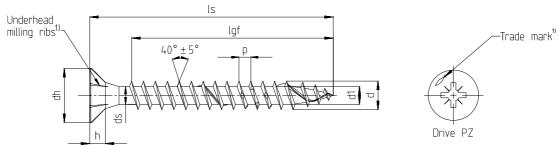
- Intermediate lengths at l<sub>s</sub> are possible
- Screws with partial thread > 50 mm length with shank ribs
- Threaded lengths between  $4 \times d \le l_g \le l_{gmax}$  are possible





 $^{1)}$  optional

Power-Fast self-drilling screw - Wood connector screw with full thread


|                           |                           | er-Fast s        | en-ar    | THIRE    | g scre | :w - v   | v oou   | conn     | ecto                 | rscre               | W WI      | ın rui  | ı uıre                   | au       |                                                  |                                                  |  |
|---------------------------|---------------------------|------------------|----------|----------|--------|----------|---------|----------|----------------------|---------------------|-----------|---------|--------------------------|----------|--------------------------------------------------|--------------------------------------------------|--|
|                           | rbon steel ssible surface | treatments:      | vellow   | or blue  | zinc-n | lated I  | 30nus-2 | zinced i | hlue zi              | nc-nlate            | ed >12ı   | ım      |                          |          |                                                  |                                                  |  |
|                           | minal dian                |                  |          | ,0       | Zine p | ratea, 1 | Jonus 2 | inicca,  | l lac zi             | ne pian             |           | A111    |                          |          |                                                  |                                                  |  |
| 110                       | Outer diam                |                  |          | 5,00     |        |          |         |          |                      |                     |           |         |                          |          | <del>                                     </del> |                                                  |  |
| d                         |                           |                  | _        |          |        |          |         |          |                      |                     |           |         |                          |          | ₩                                                |                                                  |  |
|                           | Allow. dev                |                  | -0,30    |          |        |          |         |          |                      |                     |           |         |                          |          | <u> </u>                                         |                                                  |  |
| $d_1$                     | Core diame                |                  |          | 3,00     |        |          |         |          |                      |                     |           |         |                          |          | <u> </u>                                         |                                                  |  |
| •                         | Allow. dev                |                  |          | ,20      |        |          |         |          |                      |                     |           |         |                          |          |                                                  |                                                  |  |
| du                        | Underhead diameter        |                  | 5,       | 00       |        |          |         |          |                      |                     |           |         |                          |          |                                                  |                                                  |  |
| uu                        | Allow. deviation          |                  | -0.      | ,35      |        |          |         |          |                      |                     |           |         |                          |          |                                                  |                                                  |  |
| d <sub>h</sub>            | Head diameter             |                  | 8,       | 25       |        |          |         |          |                      |                     |           |         |                          |          |                                                  |                                                  |  |
| $\mathbf{u}_{\mathrm{h}}$ | Allow. dev                | iation           | ±0       | ,40      |        |          |         |          |                      |                     |           |         |                          |          |                                                  |                                                  |  |
| П                         | Height                    |                  | 2,       | 50       |        |          |         |          |                      |                     |           |         |                          |          |                                                  |                                                  |  |
| E                         | Allow. deviation          |                  | ±0       | ±0,30    |        |          |         |          |                      |                     |           |         |                          |          |                                                  |                                                  |  |
| h                         | Head heigh                | nt               | 2.       | 2,60     |        |          |         |          |                      |                     |           |         |                          |          |                                                  |                                                  |  |
|                           | Thread pite               |                  |          | 50       |        |          |         |          |                      |                     |           |         |                          |          | 1                                                |                                                  |  |
| p                         | Allow. dev                |                  |          | 0%       |        |          |         |          |                      |                     |           |         |                          |          | -                                                |                                                  |  |
|                           | Drive TX                  |                  |          | 20 25    |        |          |         |          |                      |                     |           |         |                          |          |                                                  |                                                  |  |
|                           | Screw lengtl              |                  |          |          | read 1 | enoth    | 1 a= F  | ull thre | ad   1               | =Par                | tial thr  | ead   T | Tolerance: $\pm 2,0^{2}$ |          |                                                  |                                                  |  |
| Nomin                     |                           | I I <sub>S</sub> | Stan     | uaru ii  | reau i | l gui    | Igt — I | un unv   | zau   1 <sub>9</sub> | <sub>zp</sub> –1 a1 | 1141 1111 | cau   1 | Olcian                   | ICC. ± 2 | 2,0                                              | Т                                                |  |
| lengtl                    | mın                       | max              | $l_{gf}$ | $l_{gp}$ |        |          |         |          |                      |                     |           |         |                          |          |                                                  |                                                  |  |
| 20                        | 18,95                     | 21,05            | 14       |          |        |          |         |          |                      |                     |           |         |                          |          |                                                  |                                                  |  |
| 25                        | 23,75                     | 26,25            | 19       |          |        |          |         |          |                      |                     |           |         |                          |          |                                                  |                                                  |  |
| 30                        | 28,75                     | 31,25            | 24       |          |        |          |         |          |                      |                     |           |         |                          |          |                                                  |                                                  |  |
| 35                        | 33,50                     | 36,50            | 29       |          |        |          |         |          |                      |                     |           |         |                          |          |                                                  |                                                  |  |
| 40                        | 38,50                     | 41,50            | 34       |          |        |          |         |          |                      |                     |           |         |                          |          |                                                  |                                                  |  |
| 45                        | 43,50                     | 46,50            | 39       |          |        |          |         |          |                      |                     |           |         |                          |          |                                                  |                                                  |  |
| 50                        | 48,50                     | 51,50            | 44       |          |        |          |         |          |                      |                     |           |         |                          |          | <u> </u>                                         | <del>                                     </del> |  |
| 55                        | 53,50                     | 56,50            | 49       |          |        |          | -       |          |                      |                     | -         |         |                          |          |                                                  | 1                                                |  |
| 60                        | 58,50                     | 61,50            | 54       |          |        |          |         |          |                      |                     |           |         |                          |          |                                                  | <u> </u>                                         |  |
| 70                        | 68,50                     | 71,50            | 64       |          |        |          |         |          |                      |                     |           |         |                          |          | <u> </u>                                         |                                                  |  |
| 80                        | 80 78,50 81,50            |                  | 74       |          |        |          |         |          |                      |                     |           |         |                          | A 11 '   |                                                  |                                                  |  |

All sizes in mm

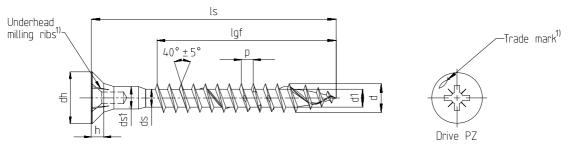
| fischer Power-Fast and Construction Screws |
|--------------------------------------------|
| Sizes and Material                         |

<sup>■</sup> Intermediate lengths at l<sub>s</sub> are possible

 $<sup>\</sup>blacksquare \qquad \text{Threaded lengths between } 4 \times d \leq l_g \leq l_{gmax} \text{ are possible}$ 



 $^{1)}$  optional


Power-Fast self-drilling screw - Small countersunk head with full thread

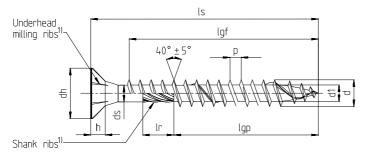
|                | Carbon steel     |            |                  |               |                   |                   |                   |                   |                   |                 |        |          |         |        |         |           |  |
|----------------|------------------|------------|------------------|---------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----------------|--------|----------|---------|--------|---------|-----------|--|
|                |                  |            |                  |               | ميرا ما سم        | -i                | 1a+ad 1=          | مند جند           | a mlata           | 1 ~ 12          |        |          |         |        |         |           |  |
| _              |                  | nal diam   | reatments:       | Ĭ             |                   | •                 |                   |                   | _                 | ı <u>∠</u> 12μι | 11     | 1        |         |        |         |           |  |
| 11(            | HIII             | iai diaii  | ieter            | 3             | ,0                | ٥,                | ,5                | 4,                | ,0                |                 |        |          |         |        |         |           |  |
| d              | Οι               | uter diam  | eter             | 3,            | 00                | 3,                | 50                | 4,                | 00                |                 |        |          |         |        |         |           |  |
| u              | Allow. deviation |            |                  |               | ±0,30             |                   |                   |                   |                   |                 |        |          |         |        |         |           |  |
| 1              | Core diameter    |            |                  | 2,            | 00                | 2,                | 20                | 2,                | 50                |                 |        |          |         |        |         |           |  |
| $\mathbf{d}_1$ | Al               | llow. dev  | iation           |               |                   | -0,25 /           | +0,10             | )                 |                   |                 |        |          |         |        |         |           |  |
| 1              | Н                | ead diam   | eter             | 5,            | 00                | 6,00 7,00         |                   |                   |                   |                 |        |          |         |        |         |           |  |
| $d_{\rm h}$    | Al               | llow. dev  | iation           | -0,50 / +0,10 |                   |                   |                   |                   |                   |                 |        |          |         |        |         |           |  |
| h              | Head height      |            |                  | 1,90          |                   | 2,10              |                   | 2,50              |                   |                 |        |          |         |        |         |           |  |
|                | Th               | nread pito | h                | 1,50          |                   | 1,80              |                   | 2,                | 00                |                 |        |          |         |        |         |           |  |
| p              | Al               | llow. dev  | iation           | ±10%          |                   |                   |                   |                   |                   |                 |        |          |         |        |         |           |  |
|                | I                | Drive PZ   |                  | 1 2           |                   |                   |                   |                   |                   |                 |        |          |         |        |         |           |  |
|                | Scr              | ew length  | ı l <sub>s</sub> | Stand         | dard th           | read le           | ength             | $l_{gf} = F_1$    | ull thre          | ad   lgr        | ,=Part | ial thre | ead   T | oleran | ce: ± 2 | $2,0^{2}$ |  |
|                | Nominal min max  |            | max              | $l_{ m gf}$   | $l_{\mathrm{gp}}$ | $l_{\mathrm{gf}}$ | $l_{\mathrm{gp}}$ | $l_{\mathrm{gf}}$ | $l_{\mathrm{gp}}$ |                 |        |          |         |        |         |           |  |
| lengt          | uıı              |            |                  | _             |                   | _                 |                   | _                 |                   |                 |        |          |         |        |         |           |  |
| 20             |                  | 18,95      | 21,05            | 16            |                   | 16                |                   | 16                |                   |                 |        |          |         |        |         |           |  |
| 25             |                  | 23,75      | 26,25            | 21            |                   | 21                |                   | 20                |                   |                 |        |          |         |        |         |           |  |
| 30             |                  | 28,75      | 31,25            | 26            |                   |                   |                   |                   |                   |                 |        |          |         |        |         |           |  |

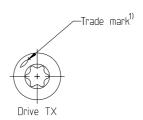
- Intermediate lengths at  $l_s$  are possible Threaded lengths between  $4\times d \leq l_g \leq l_{gmax}$  are possible

| 2) $10 \text{mm} \ge l_g \le 18 \text{mm} \triangleq \pm 1,$ | 5mm |
|--------------------------------------------------------------|-----|
| $18$ mm $\geq l_g \leq 30$ mm $\triangleq \pm 1$ ,           | 7mm |

| fischer Power-Fast and Construction Screws |
|--------------------------------------------|
| Sizes and Material                         |




Power-Fast self-drilling screw - Countersunk headhole screw with full thread

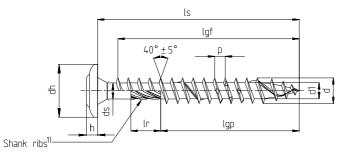

| Carbon steel               |                  |            |                |                                              |          |                   |          |                   |          |                   |                       |        |        |         |        |                     |    |
|----------------------------|------------------|------------|----------------|----------------------------------------------|----------|-------------------|----------|-------------------|----------|-------------------|-----------------------|--------|--------|---------|--------|---------------------|----|
|                            |                  |            | reatments:     | hlue zin                                     | c_nlate  | d blue            | zinc-nl  | lated >1          | 2um      |                   |                       |        |        |         |        |                     |    |
|                            |                  |            |                | 4.                                           | _        |                   | ,5       |                   |          |                   | Λ                     |        |        |         |        |                     |    |
| INC                        |                  | nal diam   |                |                                              |          |                   |          | ,                 | ,0       |                   | ,0                    |        |        |         |        |                     |    |
| d                          |                  | ıter diame |                | 4,0                                          | )()      | 4,                | 50       |                   | 00       | 6,0               | 00                    |        |        |         |        |                     |    |
|                            |                  | low. devi  |                |                                              |          |                   |          | ,30               |          |                   |                       |        |        |         |        |                     |    |
| $d_1$                      |                  | ore diame  |                | 2,50 2,70                                    |          |                   |          | 3,00 4,00         |          |                   |                       |        |        |         |        |                     |    |
| G <sub>1</sub>             |                  | low. devi  |                | -0,25 / +0,10                                |          |                   |          |                   |          | ,20               |                       |        |        |         |        |                     |    |
| $d_{\rm h}$                | Head diameter    |            |                | 8,0                                          | 00       | 9,0               |          |                   | ,00      | 12,               | ,00                   |        |        |         |        |                     |    |
| G <sub>II</sub>            | Allow. deviation |            |                |                                              |          |                   |          | +0,10             |          | ı                 |                       |        |        |         |        |                     |    |
| $d_{\rm s}$                | Shank diameter   |            |                | 2,9                                          | 90       | 3,2               |          | - ,               | 60       | 4,3               | 30                    |        |        |         |        |                     |    |
|                            |                  | low. devi  |                |                                              |          |                   | ,        | '+0,10            |          |                   |                       |        |        |         |        |                     |    |
| h                          | Head height      |            |                | 2,5                                          |          |                   | 70       |                   | 00       |                   | 80                    |        |        |         |        |                     |    |
| n                          |                  | read pitcl |                | 2,0                                          | 00       | 2,2               | 20       |                   | 50       | 3,00-             | -4,50                 |        |        |         |        |                     |    |
| p                          |                  | low. devi  |                | ±10%                                         |          |                   |          |                   |          |                   |                       |        |        |         |        |                     |    |
| $d_{s1}$                   | Shank diameter   |            |                | 3,7                                          | 70       | 3,                | 85       |                   | 50       | 4,2               | 20                    |        |        |         |        |                     |    |
| $\mathbf{u}_{\mathrm{s}1}$ |                  | low. devi  | ation          |                                              |          |                   |          | ,10               |          |                   |                       |        |        |         |        |                     |    |
|                            | ]                | Drive PZ   |                |                                              |          | 2                 | 2        |                   |          | 3                 | 3                     |        |        |         |        |                     |    |
|                            | Scr              | ew length  | l <sub>s</sub> | Standard thread length $  l_{gf} =$ Full the |          |                   |          |                   |          |                   | 1   1 <sub>gp</sub> = | Partia | thread | d   Tol | erance | $: \pm 2.0^{\circ}$ | 2) |
| Nomi                       | nal              | min        | ***            | 1                                            | 1        | 1                 | 1        | 1                 | 1        | 1                 | 1                     |        |        |         |        |                     |    |
| leng                       |                  | ШШ         | max            | $l_{\mathrm{gf}}$                            | $l_{gp}$ | $l_{\mathrm{gf}}$ | $l_{gp}$ | $l_{\mathrm{gf}}$ | $l_{gp}$ | $l_{\mathrm{gf}}$ | $l_{gp}$              |        |        |         |        |                     |    |
| 25                         |                  | 23,75      | 26,25          | 17,5                                         |          |                   |          |                   |          |                   |                       |        |        |         |        |                     |    |
| 27                         |                  | 25,75      | 28,25          | 19,5                                         |          |                   |          |                   |          |                   |                       |        |        |         |        |                     |    |
| 30                         |                  | 28,75      | 31,25          | 22,5                                         |          | 19                |          |                   |          |                   |                       |        |        |         |        |                     |    |
| 35                         |                  | 33,50      | 36,50          | 27,5                                         |          | 24                |          |                   |          |                   |                       |        |        |         |        |                     |    |
| 40                         |                  | 38,50      | 41,50          | 32,5                                         |          | 29                |          | 29                |          |                   |                       |        |        |         |        |                     |    |
| 45                         |                  | 43,50      | 46,50          | 37,5                                         |          | 34                |          | 34                |          |                   |                       |        |        |         |        |                     |    |
| 50                         |                  | 48,50      | 51,50          | 42,5                                         |          | 39                |          | 39                |          | 41                |                       |        |        |         |        |                     |    |
| 55                         |                  | 53,50      | 56,50          | 47,5                                         |          | 44                |          | 44                |          | 46                |                       |        |        |         |        |                     |    |
| 60                         |                  | 58,50      | 61,50          | 50,0                                         |          | 49                |          | 49                |          | 51                |                       |        |        |         |        |                     |    |
| 70                         |                  | 68,50      | 71,50          |                                              |          | 59                |          | 60                |          | 60                |                       |        |        |         |        |                     |    |
| 80                         |                  | 78,50      | 81,50          |                                              |          | 59                |          | 60                |          | 60                |                       |        |        |         |        |                     |    |
| 90                         |                  | 88,25      | 91,75          |                                              |          | 59                |          | 60                |          | 60                |                       |        |        |         |        |                     |    |
| 100                        | )                | 98,25      | 101,75         |                                              |          |                   |          | 60                |          | 60                |                       |        |        |         |        |                     |    |

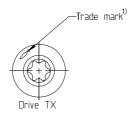
All sizes in mm

| fischer Power-Fast and Construction Screws |
|--------------------------------------------|
| Sizes and Material                         |

Intermediate lengths at  $l_s$  are possible Threaded lengths between  $4\times d \leq l_g \leq l_{gmax}$  are possible





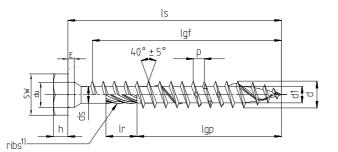


 $^{1)}$  optional

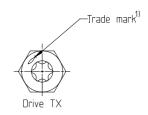
Power-Fast wood construction screw - Countersunk head with full- or partial thread

| Power-Fast wood construction screw - Countersunk head with full- or partial thread  Carbon steel |                              |                  |                                                                              |          |          |          |                   |          |          |          |         |         |         |         |              |          |
|--------------------------------------------------------------------------------------------------|------------------------------|------------------|------------------------------------------------------------------------------|----------|----------|----------|-------------------|----------|----------|----------|---------|---------|---------|---------|--------------|----------|
|                                                                                                  | bon steel<br>sible surface t | reatments:       | yellow                                                                       | or blue  | zinc-pl  | ated, b  | lue zinc          | -plated  | l ≥12μn  | n, bonu  | s-zince | d       |         |         |              |          |
| No                                                                                               | minal dian                   | ieter            | 6                                                                            | ,0       | 8        | ,0       | 10,0              |          | 12       | 2,0      |         |         |         |         |              |          |
|                                                                                                  | Outer diame                  | ter              | 6,                                                                           | 00       | 8,       | 8,00     |                   | ,00      | 12.      | ,00      |         |         |         |         |              |          |
| d                                                                                                | Allow. devia                 | ation            |                                                                              | ±0.      | ,30      |          | ±0                | ,40      | ±0.      | ,50      |         |         |         |         |              |          |
| 1                                                                                                | Core diamet                  | er               | 4,                                                                           | 00       | 5,       | 40       | 6,40              |          | 7,60     |          |         |         |         |         |              |          |
| d <sub>1</sub>                                                                                   | Allow. devia                 | ation            |                                                                              | <u> </u> | ±0.      | ,20      |                   |          | ±0,30    |          |         |         |         |         |              |          |
| ,                                                                                                | Head diamet                  | ter              | 12.                                                                          | ,00      | 14.      | ,40      | 18,40             |          | 22,40    |          |         |         |         |         |              |          |
| d <sub>h</sub>                                                                                   | Allow. devia                 | -0,50            | /+0,10                                                                       |          | ±0       | ,40      |                   | ±0.      | ,50      |          |         |         |         |         |              |          |
| .1                                                                                               | Shank diame                  | eter             | 4,                                                                           | 30       | 5,       | 90       | 7,                | 10       | 8,3      | 30       |         |         |         |         |              |          |
| ds                                                                                               | Allow. devia                 | ation            | -0,30                                                                        | /+0,10   |          |          | ±0                | ,20      |          |          |         |         |         |         |              |          |
| h                                                                                                | Head height                  |                  | 3,                                                                           | 80       | 5,       | 10       | 6,                | 10       | 7,2      | 20       |         |         |         |         |              |          |
|                                                                                                  | Thread pitch                 | 1                | 3,00                                                                         | -4,50    | 6,       | 00       |                   | 7,:      | 50       |          |         |         |         |         |              |          |
| p                                                                                                | Allow. devia                 | ation            |                                                                              |          |          | ±1       | 0%                |          |          |          |         |         |         |         |              |          |
| l <sub>r</sub> 1)                                                                                | Shank ribs lo                | ength            | 8,                                                                           | 00       |          |          | 13                | ,00      |          |          |         |         |         |         |              |          |
| Ir ′                                                                                             | Allow. devia                 | ation            |                                                                              |          |          | -2,      | 00                |          |          |          |         |         |         |         |              |          |
|                                                                                                  | Drive TX                     |                  | 3                                                                            | 0        |          | 4        | 0                 |          | 5        | 0        |         |         |         |         |              |          |
|                                                                                                  |                              |                  | Standard thread length   l <sub>gf</sub> = Full thread   l <sub>gp</sub> = P |          |          |          |                   |          |          |          |         | l threa | ıd   To | lerance | $e: \pm 2,0$ | )        |
| Nomin                                                                                            | al min                       | max              | $l_{\mathrm{gf}}$                                                            | $l_{gp}$ | $l_{gf}$ | $l_{gp}$ | $l_{\mathrm{gf}}$ | $l_{gp}$ | $l_{gf}$ | lgp      |         |         |         |         |              |          |
| lengtl                                                                                           | 1                            |                  |                                                                              | 0.1      | 1gt      | Igp      | 1gt               | 1gp      | 1gt      | 1gp      |         |         |         |         |              |          |
| 60                                                                                               | 58,50                        | 61,50            | 50                                                                           | 36       |          |          |                   |          |          |          |         |         |         |         |              |          |
| 80                                                                                               | 78,50                        | 81,50            | 70                                                                           | 50       | 70       | 50       |                   | 52       |          |          |         |         |         |         |              |          |
| 90                                                                                               | 88,25                        | 91,75            |                                                                              | 60       | 80       | 50       |                   |          |          |          |         |         |         |         |              | ļ        |
| 100                                                                                              | 98,25                        | 101,75           |                                                                              | 60       | 80       | 50       |                   | 52       |          | 60       |         |         |         |         |              | <u> </u> |
| 120                                                                                              | 118,25                       | 121,75           |                                                                              | 70       | 100      | 75       |                   | 80       |          | 80       |         |         |         |         |              | <u> </u> |
| 140                                                                                              | 138,00                       | 142,00           |                                                                              | 70       |          | 75<br>75 |                   | 80       |          | 80<br>80 |         |         |         |         |              | <u> </u> |
| 160<br>180                                                                                       | 158,00<br>178,00             | 162,00<br>182,00 |                                                                              | 70<br>70 |          | 75       |                   | 100      |          | 100      |         |         |         |         |              | <u> </u> |
| 200                                                                                              | 198,00                       | 202,00           |                                                                              | 70       |          | 100      |                   | 100      |          | 100      |         |         |         |         | 1            |          |
| 220                                                                                              | 218,00                       | 202,00           |                                                                              | 70       |          | 100      |                   | 100      |          | 100      |         |         |         |         |              |          |
| 240                                                                                              | 238,00                       | 242,00           |                                                                              | 70       |          | 100      |                   | 100      |          | 120      |         |         |         |         |              |          |
| 260                                                                                              | 258,00                       | 262,00           |                                                                              | 70       |          | 100      |                   | 100      |          | 120      |         |         |         |         |              |          |
| 280                                                                                              | 278,00                       | 282,00           |                                                                              | 70       |          | 100      |                   | 115      |          | 120      |         |         |         |         |              |          |
| 300                                                                                              | 298,00                       | 302,00           |                                                                              | 70       |          | 100      |                   | 115      |          | 120      |         |         |         |         |              |          |
| 320                                                                                              | 317,00                       | 323,00           |                                                                              |          |          | 100      |                   | 115      |          |          |         |         |         |         |              |          |
| 330                                                                                              | 327,00                       | 333,00           |                                                                              |          |          |          |                   | 115      |          |          |         |         |         |         |              |          |
| 340                                                                                              | 337,00                       | 343,00           |                                                                              |          |          | 100      |                   | 115      |          |          |         |         |         |         |              |          |
| 350                                                                                              | 347,00                       | 353,00           |                                                                              |          |          |          |                   |          |          | 145      |         |         |         |         |              |          |
| 360                                                                                              | 357,00                       | 363,00           |                                                                              |          |          | 100      |                   | 115      |          |          |         |         |         |         |              |          |
| 380                                                                                              | 377,00                       | 383,00           |                                                                              |          |          | 100      |                   | 115      |          |          |         |         |         |         |              | <u> </u> |
| 400                                                                                              | 397,00                       | 403,00           |                                                                              |          |          |          |                   |          |          |          |         |         |         |         |              |          |
| 450/50                                                                                           |                              | $l_s + 3,00$     |                                                                              |          |          | 100      |                   | 115      |          | 145      |         |         |         |         |              | <u> </u> |
| 550/60                                                                                           | $0 l_{s} -3,00$              | $l_s +3,00$      |                                                                              |          |          |          |                   |          |          | 145      |         |         |         |         |              |          |

- Intermediate lengths at  $l_s$  are possible Threaded lengths between  $4\times d \leq l_g \leq l_{gmax}$  are possible







Power-Fast wood construction screw - Flange head with full- or partial thread

| _              | Carbon steel                   |                   |                                                         |                   |                   |                   |                   |                   |                   |              |           |       |       |       |   |  |
|----------------|--------------------------------|-------------------|---------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------|-----------|-------|-------|-------|---|--|
|                | arbon steel<br>ossible surface | treatments        | vellow                                                  | or blue           | zine-n            | lated b           | lue zin           | c-nlate           | 1>1211            | m hom        | IS-Zince  | d     |       |       |   |  |
|                | ominal dia:                    |                   |                                                         | ,0                |                   | ,0                |                   | 0.0               |                   | 2,0          | AS-ZIIICC |       |       |       |   |  |
|                | Outer diame                    |                   |                                                         | 00                |                   | 00                |                   | ,00               |                   | ,00          |           |       |       |       |   |  |
| d              | Allow. devi                    |                   | - ,                                                     |                   | ,30               |                   | ±0,40 ±0,50       |                   |                   |              |           |       |       |       |   |  |
| ı              | Core diame                     | ter               | 4,                                                      | 00                | 5,                | 40                | 6,40 7,60         |                   |                   |              |           |       |       |       |   |  |
| $\mathbf{d}_1$ | Allow. devi                    | ation             |                                                         | ±0,20             |                   |                   |                   | ±0,30             |                   |              |           |       |       |       |   |  |
| dı.            | d <sub>h</sub> Head diameter   |                   |                                                         | ,70               | 21,00             |                   |                   | ,70               | 27,90             |              |           |       |       |       |   |  |
| un             | Allow. deviation               |                   |                                                         | +1,30             |                   | ,00               |                   | +2,80             |                   |              |           |       |       |       |   |  |
| $d_{\rm s}$    | Shank diam                     |                   |                                                         | 30                | 5,                | 90                |                   | 10                |                   | ,30          |           |       |       |       |   |  |
| 43             | Allow. devi                    |                   | -0,30/                                                  | +0,10             |                   | ±0                | ,20               |                   |                   | ,30          |           |       |       |       |   |  |
| h              | Head height                    |                   |                                                         |                   | 50                |                   | 5,                | 60                |                   | ,70          |           |       |       |       |   |  |
|                | Allow. devi                    |                   | 2.00                                                    |                   | ,00               | 0.0               |                   |                   | ,50<br>50         |              |           |       |       |       |   |  |
| р              | Thread pitcl                   |                   | 3,00                                                    | -4,50             | 6,                | 00                | 00/               | 7,                | 50                |              |           |       |       |       |   |  |
| _              | Allow. devi                    |                   | 0                                                       | 00                |                   | ±1                | 0%                | 00                |                   |              |           |       |       |       |   |  |
| $l_{r}^{1)}$   | Shank rib le<br>Allow. devi    |                   | 8,                                                      | 00                |                   | 2                 | 00                | ,00               |                   |              |           |       |       |       |   |  |
|                | Drive TX                       |                   | 2                                                       | 0                 |                   |                   |                   |                   | -                 | 50           |           |       |       |       |   |  |
|                | Screw lengt                    |                   | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ |                   |                   |                   |                   |                   |                   |              | الم مرما  | Tolor |       | 120   |   |  |
| Nomir          |                                | II I <sub>S</sub> | Stant                                                   | iaiu iiii         | ead le            | ոցտ լ դ           | gf – Ful          | i iiiiea          | I   Igp =         | -rainai      | unead     | 10161 | ance. | ± 2,0 | l |  |
| lengt          |                                | max               | $l_{\mathrm{gf}}$                                       | $l_{\mathrm{gp}}$ | $l_{\mathrm{gf}}$ | $l_{\mathrm{gp}}$ | $l_{\mathrm{gf}}$ | $l_{\mathrm{gp}}$ | $l_{\mathrm{gf}}$ | $l_{\rm gp}$ |           |       |       |       |   |  |
| 60             | 58,50                          | 61,50             | 50                                                      | 36                |                   |                   |                   |                   |                   |              |           |       |       |       |   |  |
| 80             |                                | 81,50             | 70                                                      | 50                | 70                | 50                |                   | 52                |                   |              |           |       |       |       |   |  |
| 90             |                                | 91,75             |                                                         | 60                | 80                | 50                |                   |                   |                   |              |           |       |       |       |   |  |
| 100            |                                | 101,75            |                                                         | 60                | 80                | 50                |                   | 52                |                   | 60           |           |       |       |       |   |  |
| 120            |                                | 121,75            |                                                         | 70                | 100               | 75                |                   | 80                |                   | 80           |           |       |       |       |   |  |
| 140            |                                | 142,00            |                                                         | 70                |                   | 75                |                   | 80                |                   | 80           |           |       |       |       |   |  |
| 160            |                                | 162,00            |                                                         | 70                |                   | 75                |                   | 80                |                   | 80           |           |       |       |       |   |  |
| 180            |                                | 182,00            |                                                         | 70                |                   | 75                |                   | 100               |                   | 100          |           |       |       |       |   |  |
| 200            |                                | 202,00            |                                                         | 70                |                   | 100               |                   | 100               |                   | 100          |           |       |       |       |   |  |
| 220<br>240     |                                | 222,00            |                                                         | 70<br>70          |                   | 100               |                   | 100               |                   | 100          |           |       |       |       |   |  |
| 260            |                                | 242,00<br>262,00  |                                                         | 70                |                   | 100               |                   | 100               |                   | 100          |           |       |       |       |   |  |
| 280            |                                | 282,00            |                                                         | 70                |                   | 100               |                   | 115               |                   | 120          |           |       |       |       |   |  |
| 300            |                                | 302,00            |                                                         | 70                |                   | 100               |                   | 115               |                   | 120          |           |       |       |       |   |  |
| 320            |                                | 323,00            |                                                         | 70                |                   | 100               |                   | 115               |                   | 120          |           |       |       |       |   |  |
| 330            |                                | 333,00            |                                                         |                   |                   | 100               |                   | 115               |                   |              |           |       |       |       |   |  |
| 340            |                                | 343,00            |                                                         |                   |                   | 100               |                   | 115               |                   |              |           |       |       |       |   |  |
| 350            |                                | 353,00            |                                                         |                   |                   |                   |                   |                   |                   | 145          |           |       |       |       |   |  |
|                | in steps of 10                 |                   |                                                         |                   |                   |                   |                   |                   |                   |              |           |       |       |       |   |  |
| 360-50         |                                | $l_s + 3,00$      |                                                         |                   |                   | 100               |                   | 115               |                   |              |           |       |       |       |   |  |
|                | in steps of 50mm               |                   |                                                         |                   |                   |                   |                   |                   |                   |              |           |       |       |       |   |  |
| 550-60         | 00 l <sub>s</sub> -3,00        | $l_s +3,00$       |                                                         |                   |                   |                   |                   |                   |                   | 145          |           |       |       |       |   |  |
|                |                                |                   |                                                         |                   |                   |                   |                   |                   |                   |              |           |       |       |       |   |  |

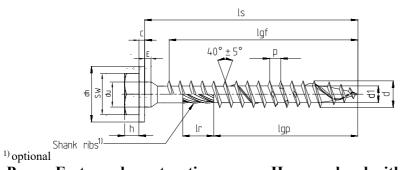
- Intermediate lengths at l<sub>s</sub> are possible
- $\blacksquare \qquad \text{Threaded lengths between } 4 \times d \leq l_g \leq l_{gmax} \text{ are possible}$

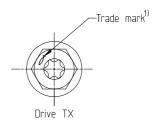
| fischer Power-Fast and Construction Screws |
|--------------------------------------------|
| Sizes and Material                         |
|                                            |





Shank ribs<sup>1).</sup>


optional


| Pow        | er-Fast w             | ood cons     | <u>struct</u> | tion s   | crew              | <u>- Нех</u> | kagor    | ı heac   | d wit                 | <u>h full</u> | <u>- or p</u> | <u>artia</u> | ıl thr | <u>ead</u>     |   |
|------------|-----------------------|--------------|---------------|----------|-------------------|--------------|----------|----------|-----------------------|---------------|---------------|--------------|--------|----------------|---|
|            | rbon steel            |              |               |          |                   |              |          |          |                       |               |               |              |        |                |   |
|            | ssible surface        |              | yellow        | or blue  |                   |              |          |          |                       |               | ıs-zince      | ed           | 1      |                |   |
| No         | minal diar            | neter        | 6             | ,0       | 8                 | ,0           | 10       | ),0      | 12                    | 2,0           |               |              |        |                |   |
| a l        | Outer diam            | eter         | 6,            | 00       | 8,                | 00           | 10       | ,00      | 12                    | ,00           |               |              |        |                |   |
| d          | Allow. dev            | iation       |               | ±0       | ,30               |              | ±0       | ,40      | ±0                    | ,50           |               |              |        |                |   |
| a          | Core diame            | eter         | 4,            | 00       | 5,                | 40           | 6,       | 40       | 7,                    | 60            |               |              |        |                |   |
| $d_1$      | Allow. dev            | iation       |               |          |                   | ,20          |          |          |                       | ±0,30         |               |              |        |                |   |
| du         | Underhead             | diameter     | 6,            | 25       | 8,25              |              | 10,30    |          | 12,40                 |               |               |              |        |                |   |
| Сu         | Allow. dev            |              |               | -0       | ,80               |              |          | ,90      | -1                    | ,00           |               |              |        |                |   |
| sw         | Wrench siz            | e            | 9,            | 90       | 12                | ,80          |          | ,80      | 16                    | ,80           |               |              |        |                |   |
| 3 W        | Allow. dev            | iation       |               |          |                   |              | ,30      |          |                       |               |               |              |        |                |   |
| Е          | Height                |              | 2,            | 00       | 2,                | 10           |          | 30       | 3,                    | 30            |               |              |        |                |   |
| Ľ          | Allow. dev            |              |               |          |                   | ,50          |          |          |                       |               |               |              |        |                |   |
| ds         | Shank dian            |              | 30            | 5,       | 90                |              | 10       | 8,       | 30                    |               |               |              |        |                |   |
| us         | Allow. dev            |              |               | +0,10    |                   |              |          | ,20      |                       |               |               |              |        |                |   |
| h          | Head heigh            |              |               | 00       |                   | 50           | 5,       | 20       |                       | 70            |               |              |        |                |   |
| 11         | Allow. dev            |              |               | ,30      | ±0                | ,40          |          |          | ,50                   |               |               |              |        |                |   |
| ,          | Thread pite           |              | 3,00          | -4,50    | 6,                | 00           |          | 7,       | 50                    |               |               |              |        |                |   |
| р          | Allow. dev            | iation       |               |          |                   | ±1           | 0%       |          |                       |               |               |              |        |                |   |
| $l_r^{1)}$ | Shank rib l           |              |               | 8,       | 00                |              |          | 13       | ,00                   |               |               |              |        |                |   |
| Ir ′       | Allow. dev            |              |               |          |                   | -2,          | ,00      |          |                       |               |               |              |        |                |   |
| Drive TX   |                       |              | 3             | 0        |                   | 4            | 0        |          | 5                     | 0             |               |              |        |                |   |
|            | Screw lengt           | h ls         | Stand         | dard the | read le           | ngth   l     | gf= Ful  | l threa  | d   l <sub>gp</sub> = | Partial       | thread        | Tole         | rance: | $\pm 2,0^{2)}$ |   |
| Nomina     | al .                  |              |               |          |                   |              |          |          |                       |               |               |              |        |                | T |
| lengtl     | mın                   | max          | $l_{gf}$      | $l_{gp}$ | $l_{\mathrm{gf}}$ | $l_{gp}$     | $l_{gf}$ | $l_{gp}$ | $l_{\mathrm{gf}}$     | $l_{gp}$      |               |              |        |                |   |
| 60         | 58,5                  | 61,5         | 50            | 30       |                   |              |          |          |                       |               |               |              |        |                |   |
| 80         | 78,5                  | 81,5         | 70            | 50       | 70                | 50           |          | 52       |                       |               |               |              |        |                |   |
| 90         | 88,25                 | 91,75        |               | 60       | 80                | 50           |          |          |                       |               |               |              |        |                |   |
| 100        | 98,25                 | 101,75       |               | 60       | 80                | 50           |          | 52       |                       | 60            |               |              |        |                |   |
| 120        | 118,25                | 121,75       |               | 70       | 100               | 75           |          | 80       |                       | 80            |               |              |        |                |   |
| 140/16     |                       | $l_s + 2,00$ |               | 70       |                   | 75           |          | 80       |                       | 80            |               |              |        |                |   |
| 180        | 178,00                | 182,00       |               | 70       |                   | 75           |          | 100      |                       | 100           |               |              |        |                |   |
| 200/22     | $0  l_{\rm s} = 2,00$ | $l_s + 2,00$ |               | 70       |                   | 100          |          | 100      |                       | 100           |               |              |        |                |   |
| 240/26     |                       | $l_s + 2,00$ |               | 70       |                   | 100          |          | 100      |                       | 120           |               |              |        |                |   |
| 280/30     |                       | $l_s + 2,00$ |               | 70       |                   | 100          |          | 115      |                       | 120           |               |              |        |                |   |
| 320        | 317,00                | 323,00       |               |          |                   | 100          |          | 115      |                       |               |               |              |        |                |   |
| 330        | 327,00                | 333,00       |               |          |                   |              |          | 115      |                       |               |               |              |        |                |   |
| 340        | 337,00                | 343,00       |               |          |                   | 100          |          | 115      |                       |               |               |              |        |                |   |
| 350        | 347,00                | 353,00       |               |          |                   |              |          |          |                       | 145           |               |              |        |                |   |
| 360/38     |                       | $l_s + 3,00$ |               |          |                   | 100          |          | 115      |                       |               |               |              |        |                |   |
|            | 1 steps of 50r        |              |               |          |                   |              |          |          |                       |               |               |              |        |                |   |
| 400-50     |                       | $l_s + 3,00$ |               |          |                   | 100          |          | 115      |                       | 145           |               |              |        |                |   |
| 550/60     |                       | $l_s + 3,00$ |               |          |                   |              |          |          |                       | 145           |               |              |        |                |   |

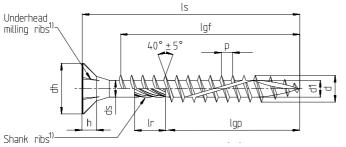
All sizes in mm

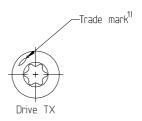
- Intermediate lengths at l<sub>s</sub> are possible
- Threaded lengths between  $4{\times}d \leq l_g \leq l_{gmax}$  are possible

 $^{2)}$  18mm  $\geq l_{\rm g} \leq$  30mm  $\triangleq \pm 1,7mm$ 






Power-Fast wood construction screw - Hexagon head with washer and full- or partial thread

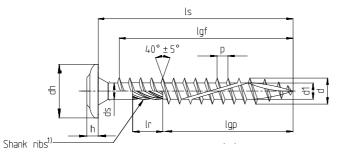

| <ul> <li>Carbon steel</li> <li>Possible surface treatments: yellow or blue zinc-plated, blue zinc-plated ≥12μm, bonus-zinced</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                   |                     |                   |                        |                   |                                                |                                                |           |          |          |       |         |          |
|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|---------------------|-------------------|------------------------|-------------------|------------------------------------------------|------------------------------------------------|-----------|----------|----------|-------|---------|----------|
|                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | treatments:  | vellow            | or blue             | zinc-r            | olated, b              | olue zin          | c-plate                                        | d≥12µ                                          | m, bonı   | ıs-zinc  | ed       |       |         |          |
|                                                                                                                                         | minal dian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                   | ,0                  |                   | ,0                     |                   | ),0                                            |                                                | 2,0       |          |          |       |         |          |
| ı                                                                                                                                       | Outer diame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ter          | 6,                | 00                  | 8,                | 00                     | 10                | ,00                                            | 12                                             | ,00       |          |          |       |         |          |
| d                                                                                                                                       | Allow. devia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ation        |                   | ±0.                 | ,30               |                        | ±0                | ,40                                            | ±0                                             | ,50       |          |          |       |         |          |
| $d_1$                                                                                                                                   | Core diamet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | er           | 4,                | 00                  |                   | 40                     | 6,                | 40                                             |                                                | 60        |          |          |       |         |          |
| u <sub>l</sub>                                                                                                                          | Allow. devia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                   |                     |                   | ,20                    |                   |                                                |                                                | ,30       |          |          |       |         |          |
| $d_h$                                                                                                                                   | Head diame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | 15                | ,00                 |                   | ,00                    | 21                | 21,50                                          |                                                | 23,40     |          |          |       |         |          |
| G <sub>II</sub>                                                                                                                         | Allow. devia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                   |                     | 20                |                        |                   | 1,                                             |                                                |           |          |          |       |         |          |
| $d_{\mathrm{u}}$                                                                                                                        | Underhead of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | 6,                | 25                  |                   | 25                     | 10,30 12,40       |                                                |                                                |           |          |          |       |         |          |
| - Cu                                                                                                                                    | Allow. deviation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                   |                     | 80                |                        |                   | ,90                                            |                                                | ,00       |          |          |       |         |          |
| SW                                                                                                                                      | Wrench size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   | 90                  | 12                | ,80                    |                   | ,80                                            | 16                                             | ,80       |          |          |       | 1       |          |
|                                                                                                                                         | Allow. deviation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                   |                     | _                 |                        | ,30               | •                                              | _                                              |           |          |          |       | -       |          |
| c                                                                                                                                       | Washer heig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ght          |                   | 80                  |                   | 00                     |                   | 20                                             |                                                | 50        |          |          |       | -       |          |
| Е                                                                                                                                       | Height                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | 2,                | 00                  | 2,                | 10                     |                   | 30                                             | 3,                                             | 30        |          |          |       |         |          |
|                                                                                                                                         | Allow. devia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | 4                 | 20                  | -                 |                        | ,50               | 1.0                                            | 0                                              | 20        |          |          |       | 1       |          |
| $d_{s}$                                                                                                                                 | Shank diame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   | 30                  | ٥,                | 90                     |                   | .20                                            | δ,                                             | 30        |          |          |       | -       |          |
|                                                                                                                                         | Allow. devia<br>Head height                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   | (+0,10<br>00        | 1                 | 50                     |                   | <u>,20                                    </u> | 5                                              | 70        |          |          |       |         |          |
| h                                                                                                                                       | Allow. devia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                   | ,30                 |                   | ,40                    | ٥,                |                                                | ,50                                            | 70        |          |          |       | 1       |          |
|                                                                                                                                         | Thread pitch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                   | <u>,30</u><br>-4,50 |                   | 00                     |                   |                                                | <u>,50                                    </u> |           |          |          |       |         |          |
| p                                                                                                                                       | Allow. devia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | 3,00              | -4,50               | 0,                |                        | 0%                | 7,                                             | 50                                             |           |          |          |       |         |          |
|                                                                                                                                         | Shank rib le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                   | 8 1                 | 00                |                        | 0 / 0             | 12                                             | ,00                                            |           |          |          |       |         |          |
| $l_r^{1)}$                                                                                                                              | Allow. devia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                   | 0,                  | 00                | -2                     | ,00               | 13                                             | ,00                                            |           |          |          |       |         |          |
| l.                                                                                                                                      | Drive TX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | 3                 | 0                   |                   |                        | 0                 |                                                | 5                                              | 50        |          |          |       |         |          |
|                                                                                                                                         | Screw length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                   |                     | ad leno           | th   l <sub>gf</sub> = |                   | read   1 <sub>cm</sub>                         |                                                |           | l   Tole | rance: + | 2 02) |         |          |
| Nomi                                                                                                                                    | nal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 18         | Stand             |                     | aa reng           | tii   igi              |                   | Cuu   Igp                                      | , rurer                                        | in threat | 1 1010   |          | 2,0   |         | T        |
| lengt                                                                                                                                   | min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | max          | $l_{\mathrm{gf}}$ | $l_{gp}$            | $l_{\mathrm{gf}}$ | $l_{gp}$               | $l_{\mathrm{gf}}$ | $l_{gp}$                                       | $l_{\mathrm{gf}}$                              | $l_{gp}$  |          |          |       |         |          |
| 60                                                                                                                                      | 58,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 61,50        | 50                | 30                  |                   |                        |                   |                                                |                                                |           |          |          |       |         |          |
| 80                                                                                                                                      | 78,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 81,50        | 70                | 50                  | 70                | 50                     |                   | 52                                             |                                                |           |          |          |       |         |          |
| 90                                                                                                                                      | 88,25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 91,75        |                   | 60                  | 80                | 50                     |                   |                                                |                                                |           |          |          |       |         |          |
| 100                                                                                                                                     | 98,25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 101,75       |                   | 60                  | 80                | 50                     |                   | 52                                             |                                                | 60        |          |          |       |         |          |
| 120                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 121,75       |                   | 70                  | 100               | 75                     |                   | 80                                             |                                                | 80        |          |          |       |         |          |
| 140/16                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $l_s + 2,00$ |                   | 70                  |                   | 75                     |                   | 80                                             |                                                | 80        |          |          |       |         |          |
| 180                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 182,00       |                   | 70                  |                   | 75                     |                   | 100                                            |                                                | 100       |          |          |       |         |          |
| 200/22                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $l_s + 2,00$ |                   | 70                  |                   | 100                    |                   | 100                                            |                                                | 100       |          |          |       |         |          |
| 240/26                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $l_s + 2,00$ |                   | 70                  |                   | 100                    |                   | 100                                            |                                                | 120       |          |          |       |         |          |
| 280/30                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $l_s + 2,00$ |                   | 70                  |                   | 100                    |                   | 115                                            |                                                | 120       |          |          |       |         |          |
| 320                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 323,00       |                   |                     |                   | 100                    |                   | 115                                            |                                                |           |          |          |       |         |          |
| 330                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 333,00       |                   |                     |                   | 460                    |                   | 115                                            |                                                |           |          |          |       |         | <u> </u> |
| 340                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 343,00       |                   |                     |                   | 100                    |                   | 115                                            |                                                | 4         |          |          |       |         |          |
|                                                                                                                                         | 350 347,00 353,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                   |                     |                   | 100                    |                   | 11-                                            |                                                | 145       |          |          |       |         |          |
|                                                                                                                                         | $\frac{160/380}{1_s}$ $\frac{1_s-3,00}{1_s}$ $\frac{1_s+3,00}{1_s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                   |                     |                   | 100                    |                   | 115                                            |                                                |           |          | <u> </u> |       |         |          |
|                                                                                                                                         | in steps of 50mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                   |                     |                   | 100                    |                   | 115                                            |                                                | 1.45      |          | <u> </u> |       |         |          |
| 400-50                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $l_s + 3,00$ |                   |                     |                   | 100                    |                   | 115                                            |                                                | 145       |          |          |       |         | -        |
| 330/60                                                                                                                                  | $\frac{1}{1} \frac{1}{1} \frac{1}$ |              |                   |                     |                   |                        |                   |                                                |                                                | 145       |          |          |       | os in m |          |

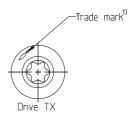
All sizes in mm

- Intermediate lengths at  $l_s$  are possible
- Threaded lengths between  $4\times d \leq l_g \leq l_{gmax}$  are possible

 $^{2)}$  18mm  $\geq l_{\rm g} \leq$  30mm  $\triangleq \pm 1,7mm$ 





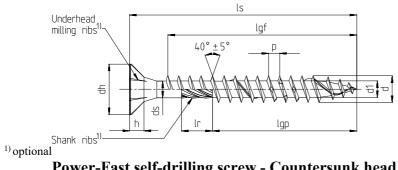


 $^{1)}$  optional

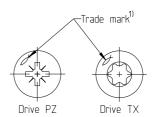
FCS wood construction screw - Countersunk head with full- or partial thread

|                           | r            | _5 wood       | constru          | iction            | i scre            | w - C             | ount              | ersun          | ik ne    | aa w        | ith Iu | II- Or   | part    | iai th   | reau    |          |  |
|---------------------------|--------------|---------------|------------------|-------------------|-------------------|-------------------|-------------------|----------------|----------|-------------|--------|----------|---------|----------|---------|----------|--|
|                           |              | n steel       |                  | 11                | 1.1               |                   | 1 , 1 1           |                | 1.       | 1 > 10      |        |          | ,       |          |         |          |  |
|                           |              |               | treatments:      |                   |                   |                   |                   | lue zin        | c-plate  | d ≥12μ<br>I | m, bon | us-zinc  | ed      | <u> </u> |         |          |  |
| N(                        |              | inal dian     |                  |                   | ,0                |                   | ),0               |                |          |             |        |          |         |          |         |          |  |
| d                         |              | uter diame    |                  | 8,                | 00                | 10                | ,00               |                |          |             |        |          |         |          |         |          |  |
| u                         | A            | llow. devi    | ation            | ±0                | ,30               | ±0                | ,40               |                |          |             |        |          |         |          |         |          |  |
| $d_1$                     |              | ore diame     |                  | 5,                | 40                |                   | 35                |                |          |             |        |          |         |          |         |          |  |
| ալ                        | A.           | llow. devi    | ation            |                   | -0,30/            | +0,20             |                   |                |          |             |        |          |         |          |         |          |  |
| $d_{\rm h}$               |              | ead diame     |                  | 14                | ,40               | 18                | ,40               |                |          |             |        |          |         |          |         |          |  |
| $u_h$                     | A.           | llow. devi    | ation            |                   | $\pm 0$           | ,40               |                   |                |          |             |        |          |         |          |         |          |  |
| $d_s$                     | Sł           | nank diam     | eter             | 5,                | 90                |                   | 10                |                |          |             |        |          |         |          |         |          |  |
| $\mathbf{u}_{\mathrm{s}}$ | A.           | llow. devi    | ation            | -0,30/+0,10       |                   |                   |                   |                |          |             |        |          |         |          |         |          |  |
| h                         | U            |               |                  |                   | -7,00             | -                 | -8,50             |                |          |             |        |          |         |          |         |          |  |
| n                         | Thread pitch |               |                  |                   | 20                |                   | 60                |                |          |             |        |          |         |          |         |          |  |
| p                         |              | llow. devi    |                  |                   | ±1                | 0%                |                   |                |          |             |        |          |         |          |         |          |  |
| $1_{r}^{1}$               |              | nank rib le   |                  |                   | 13                | 3,0               |                   |                |          |             |        |          |         |          |         | <u> </u> |  |
| 1r                        |              | llow. devi    |                  | -2,00             |                   |                   |                   |                |          |             |        |          |         |          |         | <u> </u> |  |
|                           |              | Drive TX      |                  |                   | 4                 | 0                 |                   |                |          |             |        |          |         |          |         |          |  |
|                           |              | rew lengtł    | ı l <sub>s</sub> | Stan              | dard th           | read le           | ength             | $l_{gf} = F_1$ | ull thre | ead   lg    | p=Par  | tial thr | ead   T | oleran   | ce: ± 2 | .,0      |  |
| Nomin<br>lengt            |              | min           | max              | $l_{\mathrm{gf}}$ | $l_{\mathrm{gp}}$ | $l_{\mathrm{gf}}$ | $l_{\mathrm{gp}}$ |                |          |             |        |          |         |          |         |          |  |
| 80                        |              | 78,50         | 81,50            | 70                | 50                |                   | 52                |                |          |             |        |          |         |          |         |          |  |
| 90                        |              | 88,25         | 91,75            | 80                | 50                |                   | 52                |                |          |             |        |          |         |          |         |          |  |
| 100                       |              | 98,25         | 101,75           | 80                | 50                |                   | 52                |                |          |             |        |          |         |          |         |          |  |
| 110                       |              | 108,25        | 111,75           | 100               | 75                |                   | 80                |                |          |             |        |          |         |          |         |          |  |
| 120                       |              | 118,25        | 121,75           |                   | 75                |                   | 80                |                |          |             |        |          |         |          |         |          |  |
| j                         | in st        | teps of 10    | mm               |                   |                   |                   |                   |                |          |             |        |          |         |          |         |          |  |
| 130-4                     | 00           | $l_{s}$ -2,00 | $l_s + 2,00$     |                   | 75                |                   | 80                |                |          |             |        |          |         |          |         |          |  |

- Intermediate lengths at l<sub>s</sub> are possible
- Threaded lengths between  $4 \times d \le l_g \le l_{gmax}$  are possible







FCS wood construction screw - Flange head with partial thread

|                |                  |                      | CS W00           | u con             | Struc             | tion              | scren    | - г га            | inge     | neau        | WILII    | part    | iai tii | reau    |         |    |  |
|----------------|------------------|----------------------|------------------|-------------------|-------------------|-------------------|----------|-------------------|----------|-------------|----------|---------|---------|---------|---------|----|--|
|                |                  | n steel              |                  | 11                | 1.1               |                   | 1 . 1 .  |                   | 1.       | 1 > 10      |          |         |         |         |         |    |  |
|                |                  |                      | treatments:      |                   |                   |                   |          | lue zin           | c-plate  | d ≥12µ<br>I | ım       |         |         |         |         |    |  |
| No             | omi              | nal diam             | ieter            | 8                 | ,0                | 10                | ),0      |                   |          |             |          |         |         |         |         |    |  |
| d              |                  | uter diame           |                  | ,                 | 00                |                   | 10,00    |                   |          |             |          |         |         |         |         |    |  |
| u              | A                | llow. devi           | ation            | -0,40             | /+0,30            |                   |          |                   |          |             |          |         |         |         |         |    |  |
| $d_1$          | Co               | ore diamet           | ter              | 5,                | 40                | 6,                | 6,35     |                   |          |             |          |         |         |         |         |    |  |
| uı             | Allow. deviation |                      |                  |                   |                   | ,30               |          |                   |          |             |          |         |         |         |         |    |  |
| $d_h$          | Head diameter    |                      |                  | 21                | ,00               | 24,70             |          |                   |          |             |          |         |         |         |         |    |  |
| uh             | A                | llow. devi           | ation            | ±1                | ,00               | -1,20             | +2,80    |                   |          |             |          |         |         |         |         |    |  |
| Shank diameter |                  |                      |                  | 5,                | 90                | ,                 | 10       |                   |          |             |          |         |         |         |         |    |  |
| $d_{\rm s}$    | A                | llow. devi           | ation            |                   | -0,30/            | +0,20             |          |                   |          |             |          |         |         |         |         |    |  |
| h              | Н                | ead height           | <u>t</u>         | 2,50              | -4,50             | 3,70              | -5,70    |                   |          |             |          |         |         |         |         |    |  |
| n              |                  | read pitcl           |                  | 5,                | 20                |                   | 60       |                   |          |             |          |         |         |         |         |    |  |
| p              |                  | llow. devi           |                  |                   | ±1                | 0%                |          |                   |          |             |          |         |         |         |         |    |  |
| $l_r^{1)}$     |                  | nank rib le          |                  |                   | 12                | ,00               |          |                   |          |             |          |         |         |         |         |    |  |
| Ir             |                  | llow. devi           |                  |                   | ±1                | ,00               |          |                   |          |             |          |         |         |         |         |    |  |
|                |                  | Drive TX             |                  |                   | 4                 |                   |          |                   |          |             |          |         |         |         |         |    |  |
|                | Scı              | rew length           | ı l <sub>s</sub> | Stan              | dard th           | read le           | ength    | $l_{gf} = F\iota$ | ıll thre | ad   1      | gp =Part | ial thr | ead   T | `oleran | ce: ± 2 | ,0 |  |
| Nomin<br>leng  |                  | min                  | max              | $l_{\mathrm{gf}}$ | $l_{\mathrm{gp}}$ | $l_{\mathrm{gf}}$ | $l_{gp}$ |                   |          |             |          |         |         |         |         |    |  |
| 80             |                  | 78,50                | 81,50            | 70                | 50                |                   | 52       |                   |          |             |          |         |         |         |         |    |  |
| 90             |                  | 88,25                | 91,75            | 80                | 50                |                   | 52       |                   |          |             |          |         |         |         |         |    |  |
| 100            |                  | 98,25                | 101,75           | 80                | 50                |                   | 52       |                   |          |             |          |         |         |         |         |    |  |
|                |                  |                      | 111,75           | 100               | 75                |                   | 80       |                   |          |             |          |         |         |         |         |    |  |
| 120            |                  | 118,25               | 121,75           |                   | 75                |                   | 80       |                   |          |             |          |         |         |         |         |    |  |
|                |                  | teps pf 10           | ,                |                   |                   |                   |          |                   |          |             |          |         |         |         |         |    |  |
| 130-4          |                  | l <sub>s</sub> -2,00 |                  |                   | 75                |                   | 80       |                   |          |             |          |         |         |         |         |    |  |

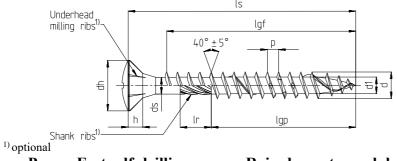
- Intermediate lengths at l<sub>s</sub> are possible
- $\blacksquare \qquad \text{Threaded lengths between } 4 \times d \leq l_g \leq l_{gmax} \text{ are possible}$

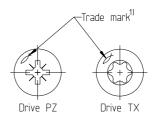
| fischer Power-Fast and Construction Scre |
|------------------------------------------|
| Sizes and Material                       |





Power-Fast self-drilling screw - Countersunk head with full- or partial thread


|                  | ower-Fas           | st sen-ui        | 11111115      | z scre                                                                                                          | - W               | Jount    | ersui    | ік пе    | au w     | tii iu   | 11- 01             | part     | iai tii           | reau     |          |          |
|------------------|--------------------|------------------|---------------|-----------------------------------------------------------------------------------------------------------------|-------------------|----------|----------|----------|----------|----------|--------------------|----------|-------------------|----------|----------|----------|
| • Stai           | inless steel       |                  |               |                                                                                                                 |                   |          |          |          |          |          |                    |          |                   |          |          |          |
| Nor              | ninal diam         | eter             | 3.            | ,0                                                                                                              | 3                 | ,5       | 4.       | ,0       | 4        | ,5       | 5,                 | ,0       | 6                 | ,0       |          |          |
| ,                | Outer diame        | ter              | 3,            | 00                                                                                                              | 3,                | 50       | 4,       | 00       | 4,       | 50       | 5,                 | 00       | 6,00              |          |          |          |
| d –              | Allow. devi        | ation            |               |                                                                                                                 |                   |          |          | ±0       | ,30      |          |                    |          |                   |          |          |          |
| a                | Core diamet        | er               | 2,            | 00                                                                                                              | 2,                | 20       | 2,       | 50       | 2,       | 70       | 3,00               |          | 4,00              |          |          |          |
| $d_1$            | Allow. devi        | ation            |               |                                                                                                                 |                   | -0,25 /  | +0,10    |          |          |          |                    |          | ),20              |          |          |          |
|                  | Head diame         |                  | 6,            | 00                                                                                                              | 7,                | 00       | ,        | 00       | ,        | 00       | 10.                | ,00      | 12                | ,00      |          |          |
|                  | Allow. deviation   |                  |               |                                                                                                                 |                   |          |          |          | '+0,10   |          | ı                  |          |                   |          |          |          |
| _                | Shank diameter     |                  |               | 25                                                                                                              | 2,                | 60       | ,        | 90       | ,        | 25       | 3,                 | 60       | 4,                | 30       |          |          |
|                  | Allow. devi        |                  |               |                                                                                                                 |                   |          |          | +0,10    |          |          |                    |          |                   |          |          |          |
|                  | C                  |                  |               | 90                                                                                                              |                   | 10       |          | 50       |          | 70       | 3,0                |          |                   | 80       |          |          |
|                  | Thread pitch       |                  | 1,            | 50                                                                                                              | 1,                | 80       | 2,       | 00       |          | 20       | 2,                 | 50       | 3,00              | -4,50    |          |          |
|                  | Allow. devia       |                  | 2             | 7.5                                                                                                             | 4                 | 2.5      | 1 4      |          | 0%       | <u> </u> |                    | 00       |                   | 00       |          |          |
|                  | Shank rib le       |                  | 3,            | 75                                                                                                              |                   | 25       | 4,       | /5       | 5,       | 50       | 6,00<br>±1,00      |          | 7,00              |          |          |          |
|                  | Allow. devia       | ation            |               | 1                                                                                                               | $\frac{\pm 0}{0}$ | ,75      |          | 2        | .0       |          | $\frac{\pm 1}{20}$ | 25       | 30                |          |          |          |
|                  | Drive PZ           |                  | <u>1</u><br>[ | U                                                                                                               |                   |          |          | 2        |          | 20       | 23                 |          | 3                 |          |          |          |
|                  |                    |                  |               | 1.1                                                                                                             | .1.1              | 1 E      |          |          | D        | . 1.1    | 1.1.5              |          |                   | 2 02)    |          |          |
|                  | Screw length       | l I <sub>s</sub> | Stand         | Standard thread length $\mid$ $l_{gf}$ = Full- thread $\mid$ $l_{gp}$ =Partial thread $\mid$ Tolerance: $\pm$ 2 |                   |          |          |          |          |          |                    |          |                   |          |          |          |
| Nomina<br>length | mın                | max              | $l_{gf}$      | $l_{gp}$                                                                                                        | $l_{gf}$          | $l_{gp}$ | $l_{gf}$ | $l_{gp}$ | $l_{gf}$ | $l_{gp}$ | $l_{gf}$           | $l_{gp}$ | $l_{\mathrm{gf}}$ | $l_{gp}$ |          |          |
| 20               | 18,95              | 21,05            | 16            |                                                                                                                 | 16                |          | 16       |          | 16       |          | _                  |          |                   |          |          |          |
| 25               | 23,75              | 26,25            | 21            |                                                                                                                 | 21                | 18       | 20       | 18       | 20       |          |                    |          |                   |          |          |          |
| 30               | 28,75              | 31,25            | 26            | 18                                                                                                              | 26                | 18       | 25       | 18       | 25       | 18       | 24                 |          |                   |          |          |          |
| 35               | 33,50              | 36,50            | 31            | 24                                                                                                              | 31                | 24       | 30       | 24       | 30       | 24       | 29                 | 24       | 28                |          |          |          |
| 40               | 38,50              | 41,50            | 36            | 24                                                                                                              | 36                | 24       | 35       | 24       | 35       | 24       | 34                 | 24       | 33                | 24       |          |          |
| 45               | 43,50              | 46,50            | 41            | 30                                                                                                              | 41                | 30       | 40       | 30       | 40       | 30       | 39                 | 30       | 38                | 30       |          |          |
| 50               | 48,50              | 51,50            |               |                                                                                                                 | 46                | 30       | 45       | 30       | 45       | 30       | 44                 | 30       | 43                | 30       |          |          |
| 55               | 53,50              | 56,50            |               |                                                                                                                 |                   |          | 50       | 36       | 50       | 36       | 49                 | 36       | 48                |          |          |          |
| 60               | 58,50              | 61,50            |               |                                                                                                                 |                   |          |          | 36       |          | 36       |                    | 36       | 53                | 36       |          |          |
| 70               | 68,50              | 71,50            |               |                                                                                                                 |                   |          |          | 42       |          | 42       |                    | 42       | 63                | 42       |          |          |
| 80               | 78,50              | 81,50            |               |                                                                                                                 |                   |          |          | 50       |          | 50       |                    | 50       | 73                | 50       |          |          |
| 90               | 88,25              | 91,75            |               |                                                                                                                 |                   |          |          |          |          |          |                    | 60       |                   | 60       |          | <u> </u> |
| 100              | 98,25              | 101,75           |               |                                                                                                                 |                   |          |          |          |          |          |                    | 60       |                   | 60       |          | <u> </u> |
| 110              | 108,25             | 111,75           |               |                                                                                                                 |                   |          |          |          |          |          |                    | 70       |                   | 70       | <u> </u> | <u> </u> |
| 120              | 118,25             | 121,75           |               |                                                                                                                 |                   |          |          |          |          |          |                    | 70       | -                 | 70       |          |          |
|                  | steps of 10r       |                  |               |                                                                                                                 |                   |          |          |          |          |          |                    |          |                   | 70       |          |          |
| 130-300          | $l_{\rm s} - 2,00$ | $I_s + 2,00$     |               |                                                                                                                 |                   |          |          |          |          |          |                    |          |                   | 70       |          |          |


All sizes in mm

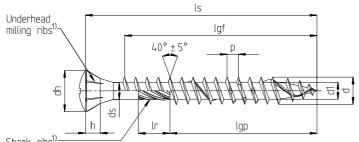
- Intermediate lengths at  $l_{s}$  are possible
- Screws with partial thread > 50 mm length with shank ribs
- Threaded lengths between  $4\times d \leq l_g \leq l_{gmax}$  are possible

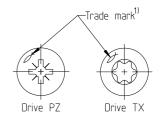
 $^{2)}~10mm \geq l_{\rm g} \leq \!\! 18mm \, \triangleq \pm 1,\! 5mm$  $18mm \geq l_g \leq 30mm \, \triangleq \pm 1{,}7mm$ 

| fischer Power-Fast and Construction Screws |
|--------------------------------------------|
| Sizes and Material                         |






Power-Fast self-drilling screw - Raised countersunk head with full- or partial thread


|                 |                   | ss steel       | en-ariii       | ng sc                                                 | rew -                     | Nais              | eu co                                            | unte     | rsunk            | пеас              | u witi              | ı ıuıı-           | or p     | artia     | ı uıre              | au       |   |
|-----------------|-------------------|----------------|----------------|-------------------------------------------------------|---------------------------|-------------------|--------------------------------------------------|----------|------------------|-------------------|---------------------|-------------------|----------|-----------|---------------------|----------|---|
|                 |                   | al diam        | notor          | 2                                                     | ,0                        | 2                 | <u>,</u> 5                                       | 1        | ,0               | 1                 | ,5                  | 5                 | ,0       | 6         | ,0                  |          |   |
| 110             |                   | ter diame      |                |                                                       | 00                        |                   |                                                  |          | , <b>u</b><br>00 |                   | <del>,5</del><br>50 |                   | 00       |           | <del>,0</del><br>00 |          |   |
| d               |                   |                |                | 3,                                                    | 00                        | 3,                | 50                                               | 4,       |                  |                   | 30                  | 3,0               | JU       | 0,        | 00                  |          |   |
|                 |                   | ow. devi       |                |                                                       | 0.0                       | _                 | 20                                               |          |                  | ,30               | <b>-</b>            | 3,00              |          | 1.00      |                     |          |   |
| $d_1$           |                   | re diame       |                | 2,                                                    | 00                        |                   | 20                                               |          | 2,50             |                   | 2,70                |                   |          |           | 00                  |          |   |
|                 |                   | ow. devi       |                |                                                       | -0,25 / +0,10 ±0,20       |                   |                                                  |          |                  |                   |                     |                   |          |           |                     |          |   |
| $d_h$           |                   | ad diame       |                | 6,                                                    | 6,00 7,00 8,00 9,00 10,00 |                   |                                                  |          |                  |                   |                     |                   | 12       | ,00       |                     |          |   |
| G <sub>II</sub> | All               | ow. devi       | ation          |                                                       | -0,50 /+0,10              |                   |                                                  |          |                  |                   |                     |                   |          |           |                     |          |   |
| Shank diameter  |                   |                | 2,             | 25                                                    | 2,                        | 60                | 2,                                               | 90       | 3,               | 25                | 3,0                 | 60                | 4,       | 30        |                     |          |   |
| d <sub>s</sub>  | All               | ow. devi       | ation          |                                                       | -0,30 / +0,10             |                   |                                                  |          |                  |                   |                     |                   |          |           |                     |          |   |
| h               | h Head height     |                |                |                                                       | 90                        | 2,                | 10                                               | 2,       | 50               | 2,                | 70                  | 3,0               | 00       | 3,        | 80                  |          |   |
|                 | Thread pitch      |                |                | 1,                                                    | 50                        | 1,                | 80                                               | 2,       | 00               | 2,                | 20                  | 2,50              |          | 3,00-4,50 |                     |          |   |
| p               | All               | ow. devi       | ation          |                                                       |                           | ı                 |                                                  |          | ±1               | 0%                |                     | l.                |          |           |                     |          |   |
| 1)              | Shank ribs length |                | 3,             | 75                                                    | 4,                        | 25                | 4,                                               | 75       | 5,               | 50                | 6,                  | 00                | 7,       | 00        |                     |          |   |
| $l_r^{1)}$      |                   | ow. devi       |                |                                                       |                           | ±0                | ,75                                              |          |                  |                   |                     | ±1.               | ,00      |           |                     |          |   |
| <u> </u>        |                   | Drive TX       |                |                                                       | 1                         | 0                 | ,                                                |          | 2                | .0                |                     | 20                | 25       | 3         | 0                   |          |   |
|                 |                   | Orive PZ       |                | -                                                     | 1 2                       |                   |                                                  |          |                  |                   |                     |                   |          |           |                     |          |   |
|                 |                   | ew length      | ı 1.           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |                           |                   |                                                  |          |                  |                   |                     |                   |          |           |                     | $0^{2)}$ |   |
| Nomin           |                   |                | * *S           |                                                       |                           |                   | ead length   Igf = Full thread   Igp = Partial 1 |          |                  |                   |                     |                   |          |           |                     | ,,,      |   |
| lengt           |                   | min            | max            | $l_{\mathrm{gf}}$                                     | $l_{gp}$                  | $l_{\mathrm{gf}}$ | $l_{gp}$                                         | $l_{gf}$ | $l_{gp}$         | $l_{\mathrm{gf}}$ | $l_{gp}$            | $l_{\mathrm{gf}}$ | $l_{gp}$ | $l_{gf}$  | $l_{gp}$            |          |   |
| 20              |                   | 18,95          | 21,05          | 16                                                    |                           | 16                |                                                  | 16       |                  | 16                |                     |                   |          |           |                     |          |   |
| 25              |                   | 23,75          | 26,25          | 21                                                    |                           | 21                | 18                                               | 21       | 18               | 20                |                     |                   |          |           |                     |          |   |
| 30              |                   | 28,75          | 31,25          | 26                                                    | 18                        | 26                | 18                                               | 26       | 18               | 25                | 18                  | 24                |          | •         |                     |          |   |
| 35              | 4                 | 33,50          | 36,50          | 31                                                    | 24                        | 31                | 24                                               | 31       | 24               | 30                | 24                  | 29                | 24       | 28        |                     |          | - |
| 40              |                   | 38,50<br>43,50 | 41,50<br>46,50 |                                                       | 30                        | 36                | 24<br>30                                         | 36<br>41 | 24<br>30         | 35<br>40          | 24<br>30            | 34<br>39          | 30       | 33        |                     |          |   |
| 50              |                   | 48,50          | 51,50          |                                                       | 30                        |                   | 30                                               | 46       | 30               | 45                | 30                  | 44                | 30       | 43        |                     |          |   |
| 55              | +                 | 53,50          | 56,50          |                                                       |                           |                   | 30                                               | 70       | 36               | 7.5               | 36                  | 77                | 36       | 7.3       |                     |          |   |
| 60              | +                 | 58,50          | 61,50          |                                                       |                           |                   |                                                  |          | 36               |                   | 36                  |                   | 36       | 53        |                     |          |   |
| 70              |                   | 68,50          | 71,50          |                                                       |                           |                   |                                                  |          | 42               |                   | 42                  |                   | 42       | 63        |                     |          |   |
| 80              |                   |                | 81,50          |                                                       |                           |                   |                                                  |          | 50               |                   | 50                  |                   | 50       | 73        |                     |          |   |

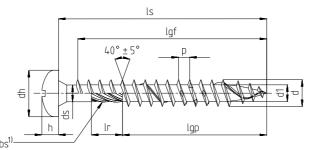
All sizes in mm

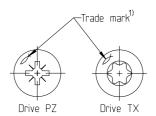
- Intermediate lengths at ls are possible
- Screws with partial thread > 50 mm length with shank ribs
- Threaded lengths between  $4\times d \leq l_g \leq l_{gmax}$  are possible

| fischer Power-Fast and Construction Screws |
|--------------------------------------------|
| Sizes and Material                         |
|                                            |






Shank ribs<sup>1)</sup>optional


Power-Fast self-drilling screw - Facade screw with full- or partial thread

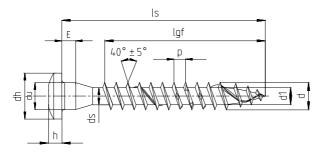
|                | 1 UWEI -         | Fast sell        | -uiii                        | nng s    | crew              | - rac    | caue              | screw    | WILL                 | i iuii- | or pa   | ai tiai  | une     | au            |     |  |
|----------------|------------------|------------------|------------------------------|----------|-------------------|----------|-------------------|----------|----------------------|---------|---------|----------|---------|---------------|-----|--|
| ■ Stai         | nless steel      |                  |                              |          |                   |          |                   |          |                      |         |         |          |         |               |     |  |
| Non            | ninal dian       | neter            | 4                            | ,0       | 4                 | ,5       | 5                 | ,0       |                      |         |         |          |         |               |     |  |
|                | Outer diam       | eter             | 4,00                         |          | 4,                | 4,50     |                   | 5,00     |                      |         |         |          |         |               |     |  |
| d –            | Allow. devi      | iation           |                              |          | ±0                | ,30      | •                 |          |                      |         |         |          |         |               |     |  |
|                | Core diame       | ter              | 2,                           | 50       | 2,                | 70       | 3,                | 3,00     |                      |         |         |          |         |               |     |  |
| $d_1$          | Allow. devi      | iation           |                              | -0,25 /  | +0,10             | )        | ±0                | ,20      |                      |         |         |          |         |               |     |  |
|                | Head diameter    |                  |                              | 90       | 6,                | 90       | 7,                | 80       |                      |         |         |          |         |               |     |  |
| d <sub>h</sub> | Allow. devi      | iation           |                              |          | ±0                | ,50      |                   |          |                      |         |         |          |         |               |     |  |
|                | Shank diam       |                  | 2.                           | 90       |                   | 25       | 3.                | 60       |                      |         |         |          |         |               |     |  |
| I d 🛏          | Allow. devi      |                  | ,                            |          |                   | '+0,10   |                   |          |                      |         |         |          |         |               |     |  |
|                | Head heigh       |                  | 2.                           | 50       | _                 | 70       |                   | 00       |                      |         |         |          |         |               |     |  |
|                | Thread pitc      |                  |                              | 00       |                   | 20       |                   | 50       |                      |         |         |          |         |               |     |  |
| n              | Allow. devi      |                  | 2,                           |          |                   | 0%       | ۷,                | 50       |                      |         |         |          |         |               |     |  |
|                | Shank ribs       |                  | 1                            | 75       |                   | 50       | 6,00              |          |                      |         |         |          |         |               |     |  |
| 1 1)           | Allow. deviation |                  |                              | ,75      | υ,                |          | ,00               | 00       |                      |         |         |          |         |               |     |  |
| -              | Drive TX         |                  |                              |          | .0                |          | 20                | 25       |                      |         |         |          |         |               |     |  |
|                | Drive PZ         |                  |                              |          |                   | 2        | 20                | 23       |                      |         |         |          |         |               |     |  |
| C              | Screw length     |                  | Standard thread length   lgf |          |                   |          |                   | -11 41   | _1 1                 | _D      | -1 41   | _ 1   T. | . 1     | 2             | 02) |  |
| Nomina         |                  | 1 1 <sub>S</sub> | Stan                         | dard in  | read le           | ngin     | $I_{gf} = F$      | ili thre | aa   I <sub>gr</sub> | =Parti  | ai inre | ad   10  | oieranc | :e: ± ∠,<br>I | 0-7 |  |
| length         | mın              | max              | $l_{\mathrm{gf}}$            | $l_{gp}$ | $l_{\mathrm{gf}}$ | $l_{gp}$ | $l_{\mathrm{gf}}$ | $l_{gp}$ |                      |         |         |          |         |               |     |  |
| 20             | 18,95            | 21,05            | 16                           |          | 16                |          |                   |          |                      |         |         |          |         |               |     |  |
| 25             | 23,75            | 26,25            | 21                           | 18       | 20                |          |                   |          |                      |         |         |          |         |               |     |  |
| 30             | 28,75            | 31,25            | 26                           | 18       | 25                | 18       | 24                |          |                      |         |         |          |         |               |     |  |
| 35             | 33,50            | 36,50            | 31                           | 24       | 30                | 24       | 29                | 24       |                      |         |         |          |         |               |     |  |
| 40             | 38,50            | 41,50            | 36                           | 24       | 35                | 24       | 34                | 24       |                      |         |         |          |         |               |     |  |
| 45             | 43,50            | 46,50            | 41                           | 30       | 40                | 30       | 39                | 30       |                      |         |         |          |         |               |     |  |
| 50             | 48,50            | 51,50            | 46                           | 30       | 45                | 30       | 44                | 30       |                      |         |         |          |         |               |     |  |
| 55             | 53,50            | 56,50            |                              | 36       |                   | 36       |                   | 36       |                      |         |         |          |         |               |     |  |
| 60             | 58,50            | 61,50            |                              | 36       |                   | 36       |                   | 36       |                      |         |         |          |         |               |     |  |
| 70             | 68,50            | 71,50            |                              | 42       |                   | 42       |                   | 42       |                      |         |         |          |         |               |     |  |
| 80             | 78,50            | 81,50            |                              | 50       |                   | 50       |                   | 50       |                      |         |         |          |         |               |     |  |
| 90             | 88,25            | 91,75            |                              |          |                   |          |                   | 60       |                      |         |         |          |         |               |     |  |
| 100            | 98,25            | 101,75           |                              |          |                   |          |                   | 60       |                      |         |         |          |         |               |     |  |
| 110            | 108,25           | 111,75           |                              |          |                   |          |                   | 70       |                      |         |         |          |         |               |     |  |
| 120            | 118,25           | 121,75           |                              |          |                   |          |                   | 70       |                      |         |         |          |         |               |     |  |

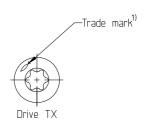
All sizes in mm

- Intermediate lengths at l<sub>s</sub> are possible
- Screws with partial thread > 50 mm length with shank ribs
- Threaded lengths between  $4 \times d \le l_g \le l_{gmax}$  are possible






Shank ribs<sup>1).</sup>
optional


Power-Fast self-drilling screw - Pan head with full- or partial thread

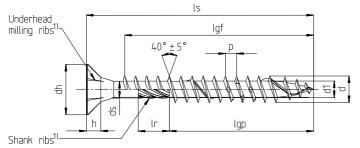
|                           | 1000              | rast s           | cii di                | 11111118                                                                                         | SCIC              | ** 1     | an ne             | au w     | itii iu           | 111- 01  | part              | iai tii  | ırcau             |           |          |                                                  |
|---------------------------|-------------------|------------------|-----------------------|--------------------------------------------------------------------------------------------------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|-----------|----------|--------------------------------------------------|
| ■ St                      | ainless steel     |                  |                       |                                                                                                  |                   |          |                   |          |                   |          |                   |          |                   |           |          |                                                  |
| No                        | Nominal diameter  |                  |                       | ,0                                                                                               | 3                 | ,5       | 4                 | ,0       | 4                 | ,5       | 5                 | ,0       | 6                 | ,0        |          |                                                  |
| d                         | Outer diam        | eter             | 3,                    | 3,00 3,50 4,00 4,50 5,00 6,00                                                                    |                   |          |                   |          |                   |          |                   | 00       |                   |           |          |                                                  |
| u                         | Allow. dev        |                  |                       | ±0,30                                                                                            |                   |          |                   |          |                   |          |                   |          |                   |           |          |                                                  |
| $d_1$                     | Core diame        |                  | 2,                    | 00                                                                                               |                   | 20       | -                 | 50       | 2,                | 70       | 3,                | 00       | 4,00              |           |          |                                                  |
| u <sub>1</sub>            | Allow. dev        |                  |                       |                                                                                                  |                   |          | '+0,10            |          |                   |          |                   |          | ,20               |           |          |                                                  |
| $d_{\rm h}$               | Head diameter     |                  |                       | 00                                                                                               | 7,                | 00       | 8,                | 00       | 9,                | 00       | 10                | ,00      | 12                | ,00       |          |                                                  |
| $\mathbf{u}_{\mathrm{h}}$ | Allow. dev        |                  |                       |                                                                                                  |                   |          | -0,50 /           | '+0,10   | )                 |          |                   |          |                   |           |          |                                                  |
| $d_{\rm s}$               | Shank diameter    |                  |                       | 25                                                                                               | 2,                | 60       | 2,                | 90       | 3,                | 25       | 3,                | 60       | 4,                | 30        |          |                                                  |
| us                        | Allow. dev        | iation           |                       |                                                                                                  |                   |          |                   | -0,30 /  | '+0,10            | )        |                   |          |                   |           |          |                                                  |
| h                         | Head heigh        | ıt               | 2,                    | 30                                                                                               | 2,                | 50       | 2,                | 90       | 3,                | 10       | 3,                | 40       | 3,                | 80        |          |                                                  |
| n                         | Thread pito       |                  | 1,                    | 50                                                                                               | 1,                | 80       | 2,                | 00       | 2,                | 20       | 2,                | 50       | 3,00              | -4,50     |          |                                                  |
| р                         | Allow. dev        | iation           |                       |                                                                                                  |                   |          |                   | ±10      | 0%                |          |                   |          |                   |           |          |                                                  |
| $l_{r}^{1)}$              | Shank ribs length |                  |                       | 75                                                                                               | 4,                | 25       | 4,                | 75       | 5,                | 50       | 6,                | 00       | 7,                | 00        |          |                                                  |
| ır                        | Allow. dev        |                  | $\pm 0.75$ $\pm 1.00$ |                                                                                                  |                   |          |                   |          |                   |          |                   |          |                   |           |          |                                                  |
|                           | Drive TX          |                  | 1                     | 0                                                                                                |                   |          | 2                 | 0        |                   | 20       | 25                | 3        | 0                 |           |          |                                                  |
|                           | Drive PZ          | ,                |                       | 1 2 3                                                                                            |                   |          |                   |          |                   |          |                   |          | 3                 |           |          |                                                  |
|                           | Screw lengt       | h l <sub>s</sub> | Stan                  | Standard thread length   $l_{gf}$ = Full thread   $l_{gp}$ =Partial thread   Tolerance: $\pm$ 2, |                   |          |                   |          |                   |          |                   |          |                   | $,0^{2)}$ |          |                                                  |
| Nomin                     | min               | max              | $l_{\mathrm{gf}}$     | $l_{gp}$                                                                                         | $l_{\mathrm{gf}}$ | $l_{gp}$ | $l_{\mathrm{gf}}$ | $l_{gp}$ | $l_{\mathrm{gf}}$ | $l_{gp}$ | $l_{\mathrm{gf}}$ | $l_{gp}$ | $l_{\mathrm{gf}}$ | $l_{gp}$  |          |                                                  |
| leng<br>20                | 18,95             | 21,05            | 16                    |                                                                                                  | 16                |          | 16                |          |                   |          |                   |          |                   |           |          |                                                  |
| 25                        | 23,75             | 26,25            | 21                    |                                                                                                  | 21                | 18       | 20                | 18       | 20                |          |                   |          |                   |           |          |                                                  |
| 30                        | 28,75             | 31,25            | 26                    | 18                                                                                               | 26                | 18       | 25                | 18       | 25                | 18       | 24                |          |                   |           |          |                                                  |
| 35                        | 33,50             | 36,50            | 31                    | 24                                                                                               | 31                | 24       | 30                | 24       | 30                | 24       | 29                | 24       | 28                |           |          |                                                  |
| 40                        | 38,50             | 41,50            |                       | 24                                                                                               | 36                | 24       | 35                | 24       | 35                | 24       | 34                | 24       | 33                | 24        |          |                                                  |
| 45                        | 43,50             | 46,50            |                       | 30                                                                                               |                   | 30       | 40                | 30       | 40                | 30       | 39                | 30       | 38                | 30        |          |                                                  |
| 50                        | 48,50             | 51,50            |                       |                                                                                                  |                   | 30       | 45                | 30       | 45                | 30       | 44                | 36       | 43                | 30        |          |                                                  |
| 55                        | 53,50             | 56,50            |                       |                                                                                                  |                   |          | 50                | 36       | 50                | 36       | 49                | 36       | 48                |           |          |                                                  |
| 60                        | 58,50             | 61,50            |                       |                                                                                                  |                   |          |                   | 36       |                   | 36       |                   | 42       | 53                | 36        |          |                                                  |
| 70                        | 68,50             | 71,50            |                       |                                                                                                  |                   |          |                   | 42       |                   | 42       |                   | 50       | 63                | 42        |          | <del>                                     </del> |
| 80                        | 78,50             | 81,50            |                       |                                                                                                  |                   |          |                   | 50       |                   | 50       |                   | 50       | 73                | 50        |          |                                                  |
| 90                        | 88,25             | 91,75            |                       |                                                                                                  |                   |          |                   |          |                   |          |                   | 60       |                   | 60        |          | 1                                                |
| 100                       | 98,25             | 101,75           |                       |                                                                                                  |                   |          |                   |          |                   |          |                   | 60       |                   | 60        | <u> </u> |                                                  |

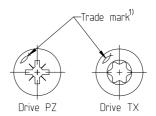
All sizes in mm

- Intermediate lengths at l<sub>s</sub> are possible
- Screws with partial thread > 50 mm length with shank ribs
- $\blacksquare \qquad \text{Threaded lengths between } 4 \times d \leq l_g \leq l_{gmax} \text{ are possible}$





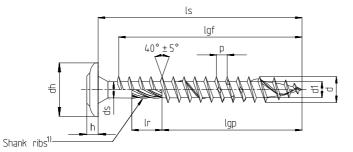

Power-Fast self-drilling screw - Wood connector screw with full thread

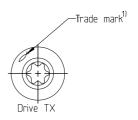

|                | 1000               | C1 - | r ast sei   | 1-4111            | iiig ,       | JC1 C 11 |       | Jou C        | omic    | ctor s   | , C1 C VV | **1111   | Iuii (  | ııı ca | u       | _          |  |
|----------------|--------------------|------|-------------|-------------------|--------------|----------|-------|--------------|---------|----------|-----------|----------|---------|--------|---------|------------|--|
| • Sta          | ainless steel      |      |             |                   |              |          |       |              |         |          |           |          |         |        |         |            |  |
| No             | minal di           | am   | eter        | 5,                | 0            |          |       |              |         |          |           |          |         |        |         |            |  |
| d              | Outer dia          |      |             | 5,0               | 00           |          |       |              |         |          |           |          |         |        |         |            |  |
| a              | Allow. d           | evia | ıtion       | -0,30             |              |          |       |              |         |          |           |          |         |        |         |            |  |
| $d_1$          | Core dia           | mete | er          | 3,0               | 3,00         |          |       |              |         |          |           |          |         |        |         |            |  |
| $\mathbf{u}_1$ | Allow. deviation   |      | ıtion       | ±0,               | ,20          |          |       |              |         |          |           |          |         |        |         |            |  |
| d <sub>u</sub> | Underhead diameter |      |             |                   | 00           |          |       |              |         |          |           |          |         |        |         |            |  |
| uu             | Allow. d           |      |             | -0,               |              |          |       |              |         |          |           |          |         |        |         |            |  |
| $d_{\rm h}$    | Head dia           |      |             | 8,2               |              |          |       |              |         |          |           |          |         |        |         |            |  |
| un             | Allow. d           | evia | ition       | ±0,               |              |          |       |              |         |          |           |          |         |        |         |            |  |
| Е              | Height             |      |             |                   | 50           |          |       |              |         |          |           |          |         |        |         |            |  |
|                | Allow. de          |      | ition       | ±0,               |              |          |       |              |         |          |           |          |         |        |         |            |  |
| h              | Head height        |      |             |                   | 50           |          |       |              |         |          |           |          |         |        |         |            |  |
| р              | Thread pitch       |      |             |                   | 50           |          |       |              |         |          |           |          |         |        |         |            |  |
| 1              | Allow. de          |      | ition       | ±10               |              |          |       |              |         |          |           |          |         |        |         |            |  |
|                | Drive 7            |      |             | 20                | 25           |          |       |              |         |          |           |          |         |        |         |            |  |
|                | Screw len          | gth  | $l_{\rm s}$ | Stand             | lard th      | read le  | ength | $l_{gf} = F$ | ull thr | ead   lg | p=Par     | tial thr | ead   T | oleran | ce: ± 2 | $2,0^{2)}$ |  |
| Nomin lengt    | mın                |      | max         | $l_{\mathrm{gf}}$ | $l_{\rm gp}$ |          |       |              |         |          |           |          |         |        |         |            |  |
| 20             | 18,95              | 5    | 21,05       | 14                |              |          |       |              |         |          |           |          |         |        |         |            |  |
| 25             | 23,75              | 5    | 26,25       | 19                |              |          |       |              |         |          |           |          |         |        |         |            |  |
| 30             | 28,75              | 5    | 31,25       | 24                |              |          |       |              |         |          |           |          |         |        |         |            |  |
| 35             | 33,50              | )    | 36,50       | 29                |              |          |       |              |         |          |           |          |         |        |         |            |  |
| 40             | 38,50              | )    | 41,50       | 34                |              |          |       |              |         |          |           |          |         |        |         |            |  |
| 45             | 43,50              |      | 46,50       | 39                |              |          |       |              |         |          |           |          |         |        |         |            |  |
| 50             | 48,50              | _    | 51,50       | 44                |              |          |       |              |         |          |           |          |         |        |         |            |  |
| 55             | 53,50              | _    | 56,50       | 49                |              |          |       |              |         |          |           |          |         |        |         |            |  |
| 60             | 58,50              |      | 61,50       | 54                |              |          |       |              |         |          |           |          |         |        |         |            |  |
| 70             | 68,50              | _    | 71,50       | 64                |              |          |       |              |         |          |           |          |         |        |         |            |  |
| 80             | 78,50              | )    | 81,50       | 74                |              |          |       |              |         |          |           |          |         |        |         |            |  |

All sizes in mm

- Intermediate lengths at  $l_s$  are possible Threaded lengths between  $4\times d \leq l_g \leq l_{gmax}$  are possible

| fischer Power-Fast and Construction Screws |
|--------------------------------------------|
| Sizes and Material                         |
|                                            |

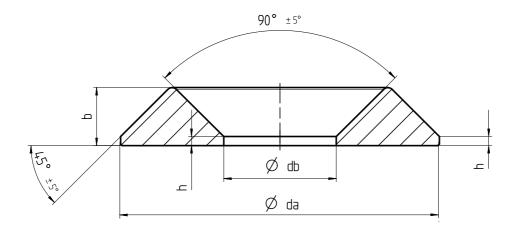



Power-Fast wood construction screw - Countersunk head with full- or partial thread

| 1000    | er-Fast w                             | oou con          | Sti ut      | tion ;   | screw             | / <del>- C</del> ( | unte           | Sulli    | Пеа      | u witi             | ı ıuıı  | - 01 p  | ai ua  | 11 (111) | tau |  |
|---------|---------------------------------------|------------------|-------------|----------|-------------------|--------------------|----------------|----------|----------|--------------------|---------|---------|--------|----------|-----|--|
| ■ Stain | less steel                            |                  |             |          |                   |                    |                |          |          |                    |         |         |        |          |     |  |
| Nom     | inal diam                             | eter             | 6           | ,0       | 8                 | ,0                 |                |          |          |                    |         |         |        |          |     |  |
| d       | Outer diam                            | eter             | 6,          | 00       | 8,00              |                    |                |          |          |                    |         |         |        |          |     |  |
| a       | Allow. dev                            | iation           |             | ±0,30    |                   |                    |                |          |          |                    |         |         |        |          |     |  |
| d (     | Core diame                            | eter             | 4,00        |          | 5,                | 40                 |                |          |          |                    |         |         |        |          |     |  |
|         | Allow. dev                            |                  |             | ±0       | ,20               |                    |                |          |          |                    |         |         |        |          |     |  |
| d       | Head diam                             |                  | 12          | ,00      | 14                | ,40                |                |          |          |                    |         |         |        |          |     |  |
| - 4     | Allow. dev                            |                  |             | /+0,10   |                   | ,40                |                |          |          |                    |         |         |        |          |     |  |
| 4       | Shank dian                            |                  |             | 30       |                   | 90                 |                |          |          |                    |         |         |        |          |     |  |
| - 4     | Allow. dev                            |                  |             | +0,10    |                   | ,20                |                |          |          |                    |         |         |        |          |     |  |
|         | Head heigh                            |                  |             | 80       |                   | 10                 |                |          |          |                    |         |         |        |          |     |  |
|         | Thread pito                           |                  | 3,00-       |          |                   | 00                 |                |          |          |                    |         |         |        |          |     |  |
|         | Allow. dev                            |                  |             |          | 0%                |                    |                |          |          |                    |         |         |        |          |     |  |
| 1 1 /   | Shank rib length                      |                  |             | 00       | 13,00             |                    |                |          |          |                    |         |         |        |          |     |  |
| 11      | Allow. deviation                      |                  |             | ,00      | _                 | -2,00              |                |          |          |                    |         |         |        |          |     |  |
|         | Drive TX                              |                  |             | 0        | 4                 | -0                 |                |          |          |                    |         |         |        |          |     |  |
|         | Drive PZ                              |                  | ,           | 3        |                   | -                  |                |          |          |                    |         |         |        |          |     |  |
| So      | crew length                           | ı l <sub>s</sub> | Stan        | dard th  | read le           | ength              | $l_{gf} = F_1$ | ull thre | ead   lg | <sub>p</sub> =Part | ial thr | ead   T | oleran | ce: ± 2  | ,0  |  |
| Nominal | - main                                | ***              | 1           | 1        | 1                 | 1                  |                |          |          |                    |         |         |        |          |     |  |
| length  | min                                   | max              | $l_{ m gf}$ | $l_{gp}$ | $l_{\mathrm{gf}}$ | $l_{gp}$           |                |          |          |                    |         |         |        |          |     |  |
| 60      | 58,50                                 | 61,50            | 50          | 36       |                   |                    |                |          |          |                    |         |         |        |          |     |  |
| 80      | 78,50                                 | 81,50            | 70          | 50       | 70                | 50                 |                |          |          |                    |         |         |        |          |     |  |
| 90      | 88,25                                 | 91,75            |             | 60       | 80                | 50                 |                |          |          |                    |         |         |        |          |     |  |
| 100     | 98,25                                 | 101,75           |             | 60       | 80                | 50                 |                |          |          |                    |         |         |        |          |     |  |
| 120     | 118,25                                | 121,75           |             | 70       | 100               | 75                 |                |          |          |                    |         |         |        |          |     |  |
| 140     | 138,00                                | 142,00           |             | 70       |                   | 75                 |                |          |          |                    |         |         |        |          |     |  |
| 160     | 158,00                                | 162,00           |             | 70       |                   | 75                 |                |          |          |                    |         |         |        |          |     |  |
|         | 180   178,00   182,00                 |                  |             | 70       |                   | 75                 |                |          |          |                    |         |         |        |          |     |  |
|         | in steps of 20mm                      |                  |             |          |                   |                    |                |          |          |                    |         |         |        |          |     |  |
|         | 200-300 $  1_s - 2,00   1_s + 2,00  $ |                  |             | 70       |                   | 100                |                |          |          |                    |         |         |        |          |     |  |
|         | in steps of 20mm                      |                  |             |          |                   |                    |                |          |          |                    |         |         |        |          |     |  |
| 320-500 | $320-500  1_s -3,00  1_s +3,00$       |                  |             |          |                   | 100                |                |          |          |                    |         |         |        |          |     |  |

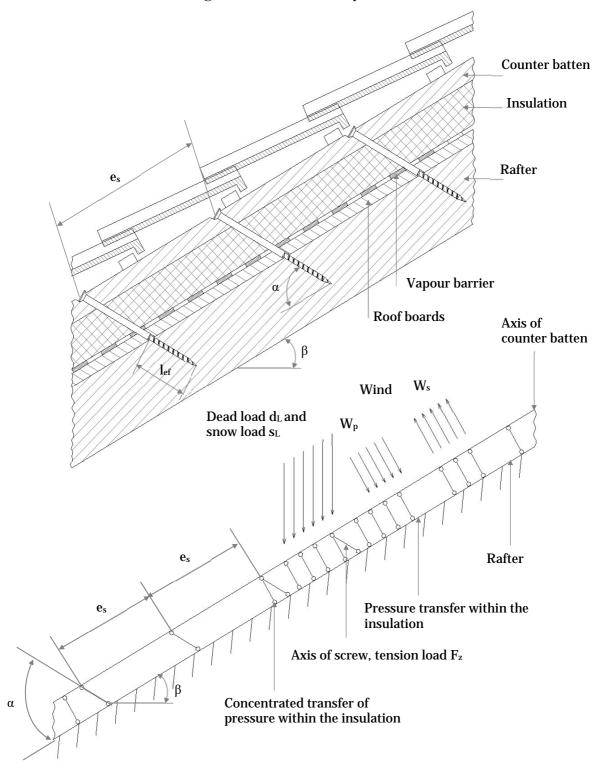
- Intermediate lengths at l<sub>s</sub> are possible
- Screws with partial thread > 50 mm length with shank ribs
- Threaded lengths between  $4 \times d \le l_g \le l_{gmax}$  are possible






Power-Fast wood construction screw - Flange head with full- or partial thread

|                   | rower-ras                                             | st wood          | const             | rucu     | on sc             | I CW -       | Tian           | ge ne    | au w     | Itili Iti          | 11- 01   | part    | iai ti | ii cau  |     |  |
|-------------------|-------------------------------------------------------|------------------|-------------------|----------|-------------------|--------------|----------------|----------|----------|--------------------|----------|---------|--------|---------|-----|--|
| ■ Sta             | inless steel                                          |                  |                   |          |                   |              |                |          |          |                    |          |         |        |         |     |  |
| No                | ominal dia                                            | meter            | 6                 | ,0       | 8                 | ,0           |                |          |          |                    |          |         |        |         |     |  |
| 1                 | Outer diam                                            | eter             | 6,                | 00       | 8,00              |              |                |          |          |                    |          |         |        |         |     |  |
| d                 | Allow. dev                                            | iation           | ±0,30             |          |                   |              |                |          |          |                    |          |         |        |         |     |  |
| a                 | Core diameter                                         |                  |                   | 00       | 5,                | 40           |                |          |          |                    |          |         |        |         |     |  |
| $d_1$             | Allow. dev                                            | iation           |                   | -0,30/   | +0,20             |              |                |          |          |                    |          |         |        |         |     |  |
| $d_h$             | Head diam                                             | eter             |                   | ,70      |                   | ,00          |                |          |          |                    |          |         |        |         |     |  |
| $u_h$             | Allow. dev                                            |                  | -0,70/            | +1,30    |                   | ,00          |                |          |          |                    |          |         |        |         |     |  |
| $d_s$             | Shank dian                                            |                  | 4,                | 30       |                   | 90           |                |          |          |                    |          |         |        |         |     |  |
| us                | Allow. dev                                            |                  |                   |          | +0,10             |              |                |          |          |                    |          |         |        |         |     |  |
| h –               | Head heigh                                            |                  |                   |          | 50                |              |                |          |          |                    |          |         |        |         |     |  |
| 11                | Allow. dev                                            |                  |                   |          | ,00               |              |                |          |          |                    |          |         |        |         |     |  |
| p                 | Thread pito                                           |                  | 3,00              | -4,50    |                   | 00           |                |          |          |                    |          |         |        |         |     |  |
| Р                 | Allow. deviation                                      |                  |                   | ±10%     |                   |              |                |          |          |                    |          |         |        |         |     |  |
| 1 <sub>r</sub> 1) | Shank rib length                                      |                  | 8,                | 00       |                   | ,00          |                |          |          |                    |          |         |        |         |     |  |
| -1                | Allow. dev                                            |                  | _                 | -2,      |                   | _            |                |          |          |                    |          |         |        |         |     |  |
|                   | Drive TX                                              |                  |                   | 0        |                   | 0            |                |          |          |                    |          |         |        |         |     |  |
|                   | Screw length                                          | ı l <sub>s</sub> | Stand             | dard th  | read le           | ength        | $l_{gf} = F_1$ | all thre | ead   lg | <sub>p</sub> =Part | ial thre | ead   T | oleran | ce: ± 2 | 2,0 |  |
| Nomina            | min                                                   | max              | $l_{\mathrm{gf}}$ | $l_{gp}$ | $l_{\mathrm{gf}}$ | $l_{\rm gp}$ |                |          |          |                    |          |         |        |         |     |  |
| length            | 1                                                     |                  |                   |          | 1gī               | 1gp          |                |          |          |                    |          |         |        |         |     |  |
| 60                | 58,50                                                 | 61,50            | 50                | 36       |                   |              |                |          |          |                    |          |         |        |         |     |  |
| 80                | 78,50                                                 | 81,50            | 70                | 50       | 70                | 50           |                |          |          |                    |          |         |        |         |     |  |
| 90                | 88,25                                                 | 91,75            |                   | 60       | 80                | 50           |                |          |          |                    |          |         |        |         |     |  |
| 100               | 98,25                                                 | 101,75           |                   | 60       | 80                | 50           |                |          |          |                    |          |         |        |         |     |  |
| 120               | 118,25                                                | 121,75           |                   | 70       | 100               | 75           |                |          |          |                    |          |         |        |         |     |  |
| 140               | 138,00                                                | 142,00           |                   | 70       |                   | 75           |                |          |          |                    |          |         |        |         |     |  |
| 160               | 158,00                                                | 162,00           |                   | 70       |                   | 75           |                |          |          |                    |          |         |        |         |     |  |
|                   | 180 178,00 182,00                                     |                  |                   | 70       |                   | 75           |                |          |          |                    |          |         |        |         |     |  |
|                   | in steps of 20mm                                      |                  |                   | 70       |                   | 100          |                |          |          |                    |          |         |        |         |     |  |
|                   | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |                  |                   | 70       |                   | 100          |                |          |          |                    |          |         |        |         |     |  |
|                   | in steps of 20mm                                      |                  |                   |          |                   | 100          |                |          |          |                    |          |         |        |         |     |  |
| 320-300           | $320-500 \mid l_s - 3,00 \mid l_s + 3,00$             |                  |                   |          |                   | 100          |                |          |          |                    |          |         |        | A 11 '  |     |  |


- Intermediate lengths at l<sub>s</sub> are possible
- Threaded lengths between  $4 \times d \le l_g \le l_{gmax}$  are possible



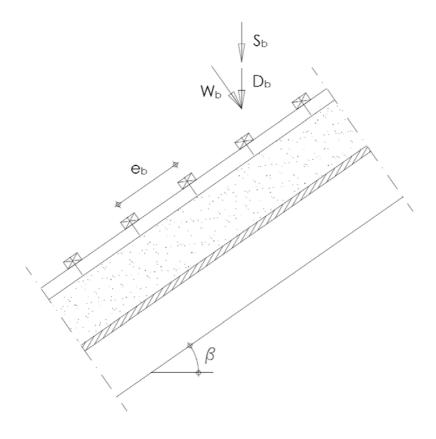
## Washer for Power-Fast and construction screws

|    | arbon Steel - possible su<br>tainless steel | ırface treatme | nts: yellow o | r blue zinc-pl | lated, bonus- | zinced, ≥12µ | m blue zinc-pl | ated  |  |  |  |  |
|----|---------------------------------------------|----------------|---------------|----------------|---------------|--------------|----------------|-------|--|--|--|--|
| N  | lominal diameter                            |                | $Ty_{J}$      | pe 1           |               | Type 2       |                |       |  |  |  |  |
|    | Size                                        | 6              | 8             | 10             | 12            | 6            | 8              | 10    |  |  |  |  |
| db | Inner diameter                              | 6,70           | 8,70          | 11,20          | 6,70          | 6,70         | 8,70           | 11,20 |  |  |  |  |
| ab | Allow. deviation                            |                | -0,40         |                |               |              |                |       |  |  |  |  |
| da | Outer diameter                              | 21             | 30            | 35             | 43            | 21           | 25,50          | 30,50 |  |  |  |  |
| aa | Allow. deviation                            |                |               |                | ±2,0          |              |                |       |  |  |  |  |
| 1. | Height                                      | 4,70           | 5,20          | 6,20           | 8,30          | 4,70         | 5,20           | 6,20  |  |  |  |  |
| b  | Allow. deviation                            |                |               |                | -0,40         |              |                |       |  |  |  |  |
| 1. | Height                                      | 1,50           | 1,80          | 2,00           | 2,20          | 1,50         | 1,80           | 2,00  |  |  |  |  |
| h  | Allow. deviation                            |                |               |                | -0,15         |              |                |       |  |  |  |  |

Fixing of on-roof insulation system



 $W_S$  = Wind suction  $W_P$  = Wind pressure


 $e_s$  = Spacing of screws  $l_{ef}$  = Thread part part of screw in rafter

B = Roof inclination  $\alpha$  = Angle between axis of screw and axis of rafter

| nscher | rower-rast at | na Construction | ocrews |
|--------|---------------|-----------------|--------|
|        |               |                 |        |

Accessories

# Fixing of on-roof insulation system Point loads $F_b$ perpendicular to the battens



$$D_b\!=d\,\cdot\,e_b\cdot\,e_r$$

$$S_b \! = \! s \, \cdot \, e_b \cdot \, e_r \cdot \, cos \; \beta$$

$$W_b\!=w_p\cdot e_b\cdot e_r$$

$$F_b = W_b + (D_b + S_b) \cdot \cos \beta$$

#### where

 $D_b = point load by dead load$ 

 $S_b = point load by snow load$ 

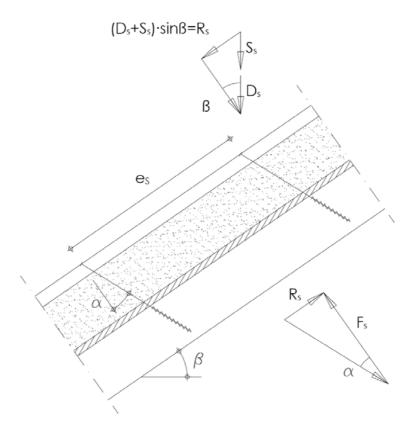
W<sub>b</sub> = point load perpendicular to the batten by wind load (pressure)

 $e_b = distance$  of the battens

 $e_r$  = distance of the rafters

 $s = snow \ load \ per \ m^2 \ ground \ area$ 

 $w_p$  = wind pressure on the roof area


 $d = dead load per m^2 roof area$ 

 $\beta = \text{roof angle}$ 

| fischer  | Power.  | Fact   | and | Constru | ction | Screws |
|----------|---------|--------|-----|---------|-------|--------|
| Hischiel | I OWEL. | -r ası | anu | Consu u | uon   | SCIEWS |

Accessories

## Point loads $F_s$ perpendicular to the battens by screws



$$D_s\!=d\cdot e_s\cdot e_r$$

$$S_s \! = \! _S \cdot e_s \cdot e_r \cdot \cos \beta$$

$$R_s = (D_s + S_s) \cdot \sin \beta$$

$$F_s = R_s / tan \alpha$$

#### where

 $D_s$  = point load by dead load

 $S_s = point load by snow load$ 

 $R_s$  = shear load of the roof by dead load and snow load

 $e_s$  = distance of the screws

 $e_r$  = distance of the rafters

 $\alpha$  = angle between screw axis and perpendicular to rafter axis

Accessories

#### Design of the battens

The bending stresses are calculated as:

$$M = \frac{\left(F_b + F_s\right) \cdot \ell_{char}}{4}$$

Where

 $\ell_{char}$  = characteristic length  $\ell_{char}$  =  $4\sqrt{\frac{4 \cdot EI}{w_{ef} \cdot K}}$ 

EI = bending stiffness of the batten

K = coefficient of subgrade

 $w_{ef}$  = effective width of the heat insulation

 $F_b$  = Point loads perpendicular to the battens

 $F_s$  = Point loads perpendicular to the battens, load application in the area of the screw heads

The coefficient of subgrade K may be calculated from the modulus of elasticity E<sub>HI</sub> and the thickness t<sub>HI</sub> of the heat insulation if the effective width wef of the heat insulation under compression is known. Due to the load extension in the heat insulation the effective width wef is greater than the width of the batten or rafter, respectively. For further calculations, the effective width wef of the heat insulation may be determined according to:

$$w_{ef} = w + t_{HI} / 2$$

where

w = minimum width of the batten or rafter, respectively

t<sub>HI</sub> = thickness of the heat insulation

$$K = \frac{E_{HI}}{t_{HI}}$$

The following condition shall be satisfied:

$$\frac{\sigma_{m,d}}{f_{m,d}} = \frac{M_d}{W \cdot f_{m,d}} \leq 1$$

For the calculation of the section modulus W the net cross section has to be considered.

The shear stresses shall be calculated according to:

$$V = \frac{(F_b + F_s)}{2}$$

The following condition shall be satisfied:

$$\frac{\tau_d}{f_{v,d}} = \frac{1,5 \cdot V_d}{A \cdot f_{v,d}} \le 1$$

For the calculation of the cross section area the net cross section has to be considered.

#### **Design of the heat insulation**

The compressive stresses in the heat insulation shall be calculated according to:

$$\sigma = \frac{1.5 \cdot F_b + F_s}{2 \cdot \ell_{char} \cdot w}$$

The design value of the compressive stress shall not be greater than 110 % of the compressive stress at 10 % deformation calculated according to EN 826.

| fischer Power-Fast and Construction Screws |
|--------------------------------------------|
| Accessories                                |

#### Design of the screws

The screws are loaded predominantly axially. The axial tension force in the screw may be calculated from the shear loads of the roof R<sub>s</sub>:

$$T_S = \frac{R_S}{\cos \alpha}$$

The load-carrying capacity of axially loaded screws is the minimum design value of the axial withdrawal capacity of the threaded part of the screw, the head pull-through capacity of the screw and the tensile capacity of the screw.

In order to limit the deformation of the screw head for heat insulation thicknesses over 200 mm or with compressive strength below  $0.12 \text{ N/mm}^2$ , respectively, the axial withdrawal capacity of the screws shall be reduced by the factors  $k_1$  and  $k_2$ :

$$F_{\text{ax},\alpha,\text{Rd}} = \text{min} \begin{cases} k_{\text{ax}} \cdot f_{\text{ax},\text{d}} \cdot \text{d} \cdot \ell_{\text{ef}} \cdot k_{_{1}} \cdot k_{_{2}} \bigg(\frac{\rho_{_{k}}}{350}\bigg)^{^{0,8}} \\ \\ f_{\text{head},\text{d}} \cdot d_{_{h}}^{^{2}} \cdot \bigg(\frac{\rho_{_{k}}}{350}\bigg)^{^{0,8}} \end{cases}$$

where:

 $f_{ax,d}$  design value of the axial withdrawal parameter of the threaded part of the screw

d outer thread diameter of the screw

Point side penetration length of the threaded part of the screw in the rafter,  $l_{ef} \ge 40$  mm

 $\alpha$  Angle between grain and screw axis ( $\alpha \ge 30^{\circ}$ )

 $ho_k$  characteristic density of the wood-based member [kg/m³]  $f_{head,d}$  design value of the head pull-through capacity of the screw

 $\begin{array}{ll} d_h & \text{head diameter} \\ k_1 & \text{min } \{1; 200/t_{HI}\} \\ k_2 & \text{min } \{1; \sigma_{10\%}/0, 12\} \end{array}$ 

thickness of the heat insulation [mm]

 $\sigma_{10\%}$  compressive stress of the heat insulation under 10 % deformation [N/mm<sup>2</sup>]

If equation  $k_1$  and  $k_2$  are considered, the deflection of the battens does not need to be considered. Alternatively to the battens, panels with a minimum thickness of 20 mm from plywood according to EN 636 or an ETA or national provisions that apply at the installation site, particle board according to EN 312 or an ETA or national provisions that apply at the installation site, oriented strand board according to EN 300 or an ETA or national provisions that apply at the installation site and solid wood panels according to EN 13353 or an ETA or national provisions that apply at the installation site or cross laminated timber according to an ETA may be used.

| fischer Power-Fast and Construction Screws |
|--------------------------------------------|
| Accessories                                |
|                                            |

#### Thermal insulation material on rafters with parallel screws perpendicular to the roof plane

Alternatively to the battens, panels with a minimum thickness of 20 mm from plywood according to EN 636, particleboard according to EN 312, oriented strand board OSB/3 and OSB/4 according to EN 300 or European Technical Approval and solid wood panels according to EN 13353 may be used.

Characteristic load-carrying capacity of a screw loaded in shear:

$$F_{v,Rk} = min \begin{cases} f_{h,b,k} \cdot d \cdot t_b \\ f_{h,r,k} \cdot d \cdot f_r \\ \frac{f_{h,b,k} \cdot d \cdot \beta}{1+\beta} \cdot \left( \sqrt{4t_{il}^2 + (2+\frac{1}{\beta})t_b^2 + (2+\beta)t_r^2 + 4t_{il}\left(t_b + t_r\right) + 2t_bt_r} - 2t_{il} - t_b - t_r \right) + \frac{F_{ax,Rk}}{4} \\ f_{v,Rk} = min \begin{cases} f_{h,b,k} \cdot d \cdot \beta \\ \frac{1}{2} + \beta \end{cases} \left( \sqrt{t_{il}^2 + t_{il}t_b + \frac{t_b^2}{2} \left(1 + \frac{1}{\beta}\right) + \frac{M_{y,k}}{f_{h,b,k}} d \left(1 + \frac{2}{\beta}\right)} - t_{il} - \frac{t_b}{2} \right) + \frac{F_{ax,Rk}}{4} \\ f_{h,b,k} \cdot d \cdot \beta \left( \sqrt{t_{il}^2 + t_{il}t_r + \frac{t_r^2}{2} \left(1 + \beta\right) + \frac{M_{y,k}}{f_{h,b,k}} d \left(2 + \frac{1}{\beta}\right)} - t_{il} - \frac{t_r}{2} \right) + \frac{F_{ax,Rk}}{4} \\ f_{h,b,k} \cdot d \cdot \beta \left( \sqrt{\beta^2 t_{il}^2 + 4\beta (\beta + 1) \cdot \frac{M_{y,k}}{f_{h,b,k}} d - \beta t_{il}} \right) + \frac{F_{ax,Rk}}{4} \end{cases}$$

Where:

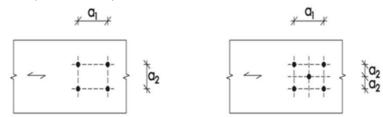
 $\begin{array}{ll} f_{h,b,k} & \quad & \text{Characteristic batten embedding strength } [N/mm^2] \\ f_{h,r,k} & \quad & \text{Characteristic rafter embedding strength } [N/mm^2] \end{array}$ 

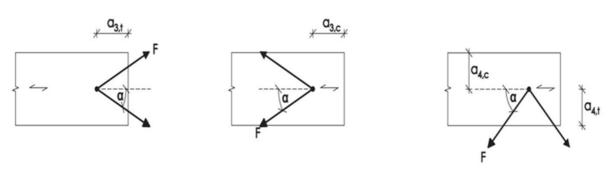
 $\beta$   $f_{h,r,k}/f_{h,b,k}$ 

d Outer thread diameter [mm]

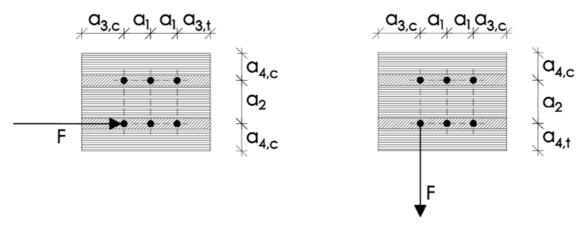
t<sub>b</sub> Batten thickness [mm]

t<sub>r</sub> The lower value of rafter thickness or screw penetration length [mm]


t<sub>il</sub> Interlayer thickness [mm]


M<sub>y,k</sub> Characteristic fastener yield moment [Nmm]

 $F_{ax,Rk}$  Characteristic axial tensile capacity of the screw [N]


#### Minimum distances and spacing

Axially or laterally loaded screws in the plane surface or edge surface of cross laminated timber Definition of spacing, end and edge distances in the plane surface unless otherwise specified in the technical specification (ETA or hEN) for the cross laminated timber:

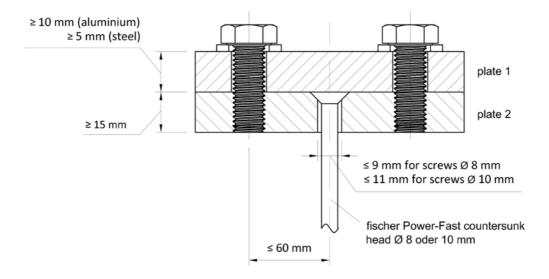




Definition of spacing, end and edge distances in the edge surface unless otherwise specified in the technical specification (ETA or hEN) for the cross laminated timber.



For screws in the edge surface,  $a_1$  and  $a_3$  are parallel to the CLT plane surface,  $a_2$  and  $a_4$  perpendicular to CLT plane surface.


Table C1: Minimum spacing, end and edge distances of screws in the plane or edge surfaces of cross laminated timber

|                              | $a_1$  | $a_{3,t}$ | a <sub>3,c</sub> | $\mathbf{a}_2$ | a <sub>4,t</sub> | a <sub>4,c</sub> |
|------------------------------|--------|-----------|------------------|----------------|------------------|------------------|
| Plane surface (see Figure 1) | 4 · d  | 6 · d     | 6 · d            | 2,5 · d        | 6 · d            | 2,5 · d          |
| Edge surface (see Figure 2)  | 10 ⋅ d | 12 · d    | 7 · d            | 4 · d          | 6 · d            | 3 · d            |

| fischer Power-Fast and Construction Screws |
|--------------------------------------------|
| Minimum distances and spacings             |

#### Visualisation of the Power-Fast screw head clamped between two metal plates

Metric screws with hexagon head, countersunk head or cylindric head or threaded rods with nut and washer – each according to the structural requirements – at least 2xM8 (≥4.6 respectively A2-50) for the connection of the two plates made of aluminium (mechanical properties at least like e.g. EN AW 6082, EN AW 5083, EN AW 6060 or EN AC-44100); made of carbon steel or made of stainless steel (each at least S235).



Information for the structural analysis of the metric screw connection and the metal plates are not part of this European Technical Assessment.

(Fig. not to scale)

| fischer Power-Fast and Construction Screws        |  |
|---------------------------------------------------|--|
| clamping of the screw head for compression impact |  |