

Einfach. Sicher. Upal

DECLARATION OF PERFORMANCE

DoP: 0063

for Upat Drop-in Anchor USA (Metal anchors for use in concrete (light-duty type)) - EN

- 1. Unique identification code of the product-type: DoP: 0063
- 2. Intended use/es: For multiple use for non-structural applications in cracked and non-cracked concrete. For use in redundant systems for fixing and/or supporting to concrete elements such as lightweight suspended ceilings, as well as installations, see appendix, especially Annexes B 1 to B 5
- 3. Manufacturer: Upat Vertriebs GmbH, Bebelstraße 11, 79108 Freiburg im Breisgau, Germany
- 4. Authorised representative: --
- 5. System/s of AVCP: 2+
- 6. European Assessment Document: ETAG 001; 2011-01

European Technical Assessment: ETA-10/0168; 2017-05-11

Technical Assessment Body: DIBt

Notified body/ies: 1343 - MPA Darmstadt

7. Declared performance/s:

Mechanical resistance and stability (BWR 1), Safety in use (BWR 4)

• Characteristic resistance for static and quasi static action, displacements: See appendix, especially Annexes C 1 to C 2

Safety in case of fire (BWR 2)

- Reaction to fire: Anchorages satisfy requirements for Class A 1
- Resistance to fire: See appendix, especially Annex C 3

8. Appropriate Technical Documentation and/or Specific Technical Documentation: ---

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Andreas Bucher, Dipl.-Ing.

Wolfgang Hengesbach, Dipl.-Ing., Dipl.-Wirtsch.-Ing.

1.V. A. Bun

i.V. W. Mglal

Tumlingen, 2017-05-18

- This DoP has been prepared in different languages. In case there is a dispute on the interpretation the english version shall always prevail.

- The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Specific Part

1 Technical description of the product

The Upat Drop-in Anchor USA is an anchor made of galvanized or stainless steel which is placed into a drilled hole and anchored by deformation-controlled expansion.

The fixture shall be anchored with a fastening screw or threaded rod.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

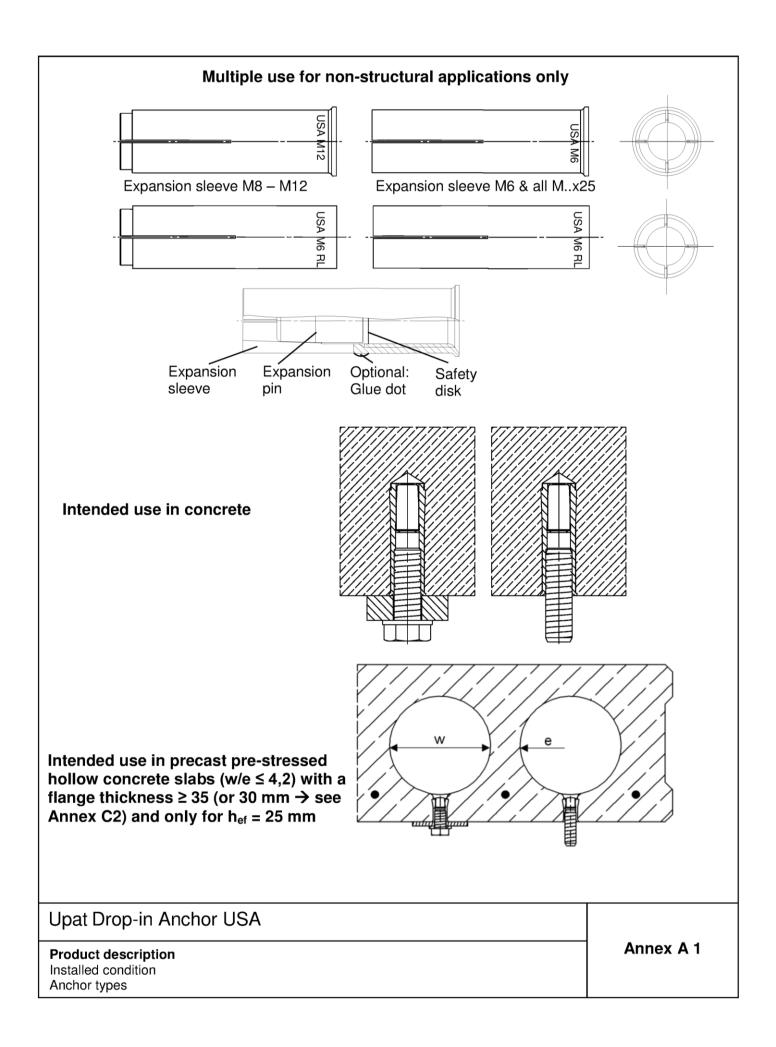
3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

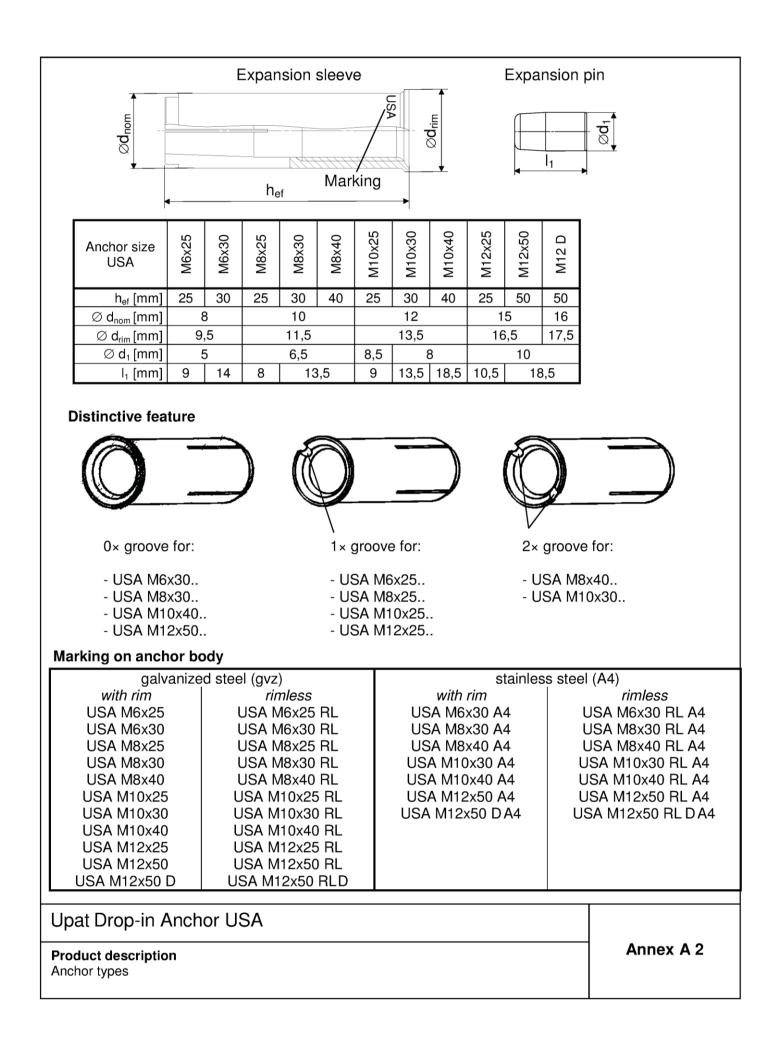
The essential characteristics regarding Mechanical resistance and stability are included under the Basic Works Requirement Safety in use.

3.2 Safety in case of fire (BWR 2)

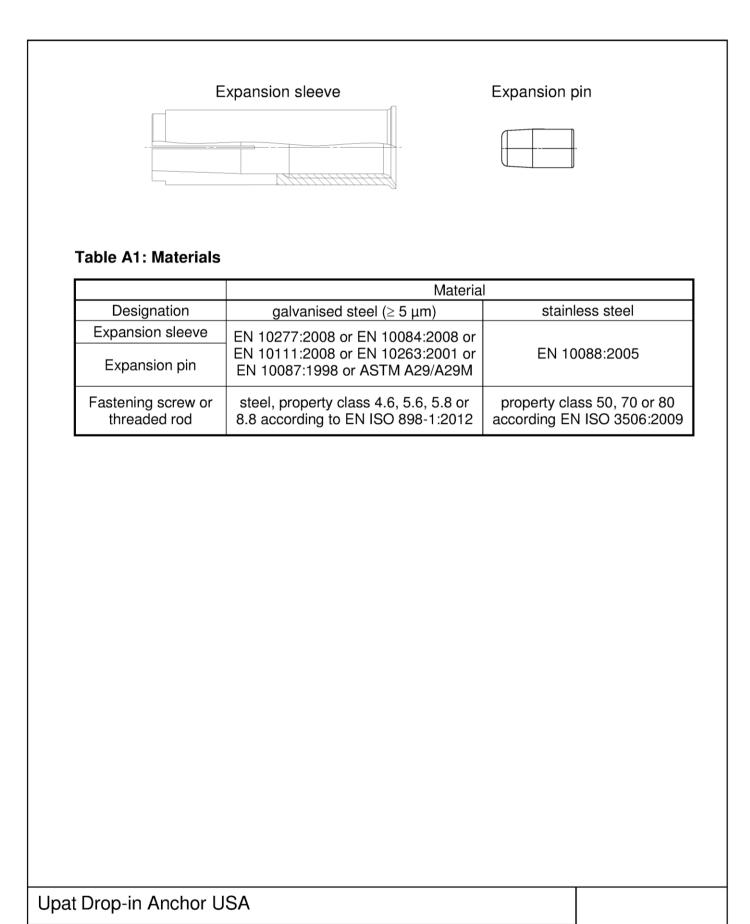
Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	See Annex C 3


3.3 Safety in use (BWR 4)

Essential characteristic	Performance					
Characteristic resistance for static and quasi-static loading, displacements	See Annex C 1 to C 2					


4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, January 2011 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [97/161/EC].


The system to be applied is: 2+

Appendix 3 / 12

Appendix 4 / 12

Product description Material

Annex A 3

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads
- · Only to be used for multiple use for non-structural application
- · Fire exposure: only in concrete C12/15 to C50/60, not prestressed hollow concrete slabs

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000
- Strength classes C12/15 to C50/60 according to EN 206-1:2000
- Precast prestressed hollow concrete slabs with w/e ≤ 4,2 and strength classes C30/37 to C50/60: M6x25, M8x25, M10x25 and M12x25
- Cracked concrete and non-cracked concrete: all sizes

Use conditions (Environmental conditions):

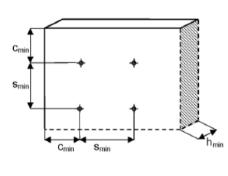
- Structures subject to dry internal conditions (zinc coated steel or stainless steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel)

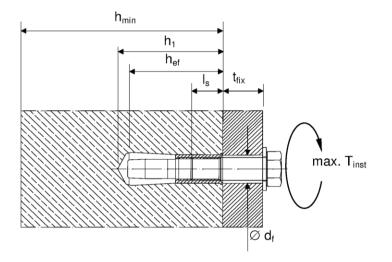
Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.)
 - Anchorages under static or quasi-static actions are to be designed in accordance with:
 - ETAG 001, Annex C, design method B and C, Edition August 2010 or
 - CEN/TS 1992-4:2009, design method B
- Fasteners are only to be used for multiple use for non-structural application, according to: ETAG 001 Part 6, Edition August 2010
- Anchorages under fire exposure are designed in accordance with:
 - EOTA Technical Report TR 020, Edition May 2004
 - CEN/TS 1992-4:2009
 - It must be ensured that local spalling of the concrete cover does not occur

Installation:


- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · Create drill hole with hammer drill or with hollow drill and vacuum cleaner
- · The anchor may only be used once
- Anchor expansion by impact using the setting tools given in Annex B 4. The anchor is property set if the stop of the setting tool reaches the expansion sleeve. The manual setting tool with installation control leaves a visible mark on the sleeve, as illustrated in Annex B4 and B 5

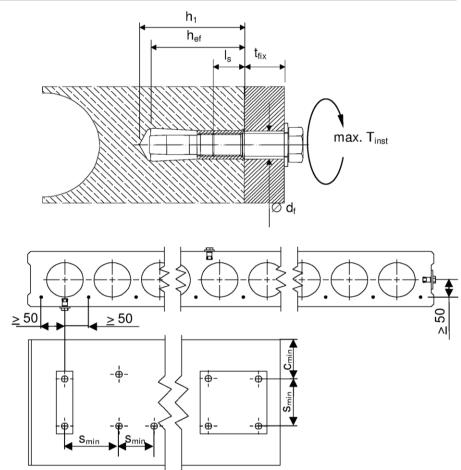

Upat Drop-in Anchor USA

Intended Use Specifications

Anchor size			N	M6 M8		M10			M	12	M12D		
Nominal drill hole diameter	d ₀	[mm]	8	8		10			12		15		16
Effective anchorage depth	h _{ef}	[mm]	25	30	25	30	40	25	30	40	25	50	50
Maximum installation torque	max. T _{inst}	[Nm]	4	4		8			15			35	
Minimum drill hole depth	h ₁	[mm]	27	32	27	33	43	27	33	43	27	54	54
Minimum screw-in depth	I _{s,min}	[mm]	6 8 10										
Maximum screw-in depth	I _{s,max}	[mm]	1	14 14		1	4	17	14	22			
Clearance hole diameter	Ø d _f ≤	[mm]	7 9				12		14				
h _{min} = 80 mm													
Minimum spacing	S _{min}	[mm]	30	70	70	110	200	80	20)0	100	-	-
Minimum edge distance	C _{min}	[mm]	60	150	100	15	50	120	15	50	130	-	-
h _{min} = 100 mm													
Minimum spacing	S _{min}	[mm]	30	65	50	7	0	60	90	150	100		200
Minimum edge distance	C _{min}	[mm]	60	115	100 115		100	160 180		110	200		
h _{min} = 120 mm													
Minimum spacing	S _{min}	[mm]	30	65	50	7	0	60	85	95	100		145

Table B1: Installation parameters for concrete C12/15 to C50/60

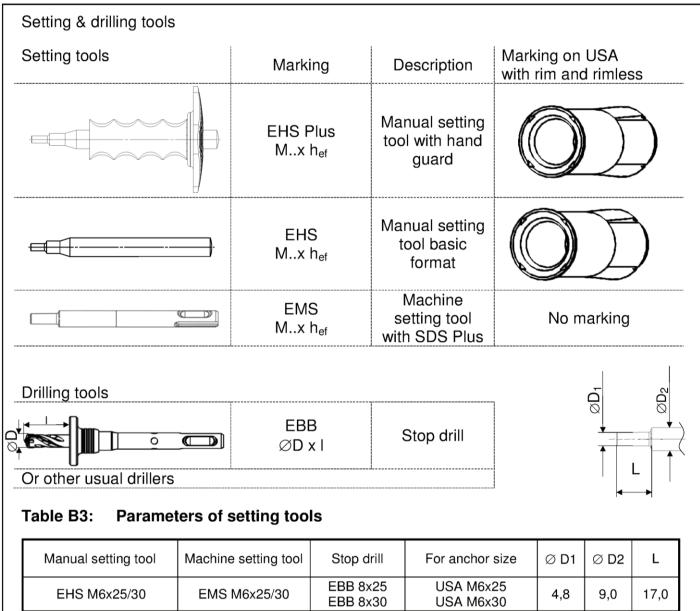
Fastening screw or threaded rod:


- Minimum property class and materials according to table A1
- The length of the fastening screw or threaded rod shall be determined depending on thickness of fixture $t_{\rm fix}$, admissible tolerances and maximum screw length $l_{\rm s,max}$ as well as minimum screw-in depth $l_{\rm s,min.}$

Upat Drop-in Anchor USA

Intended Use Installation parameters Annex B 2

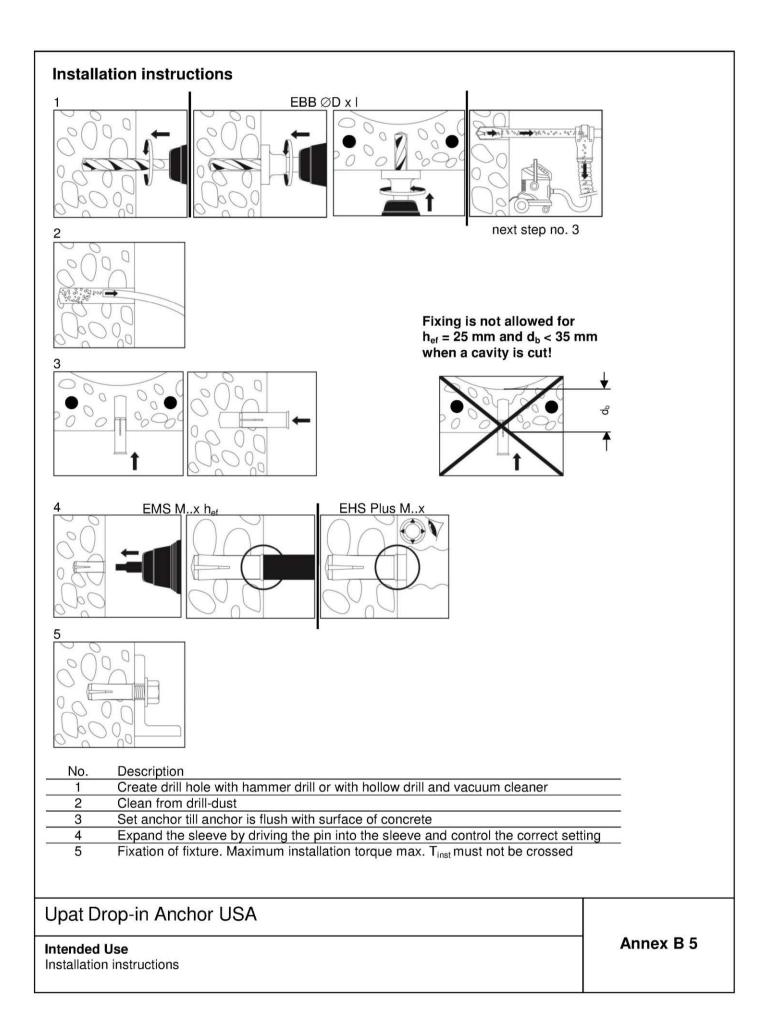
Anchor size	Anchor size					
Nominal drill hole diameter	d _o	[mm]	8	10	12	15
Effective anchorage depth	h _{ef}	[mm]			25	
Maximum installation torque	max. T _{inst}	[Nm]	4	8	15	35
Minimum drill hole depth	h ₁	[mm]	27			
Minimum screw-in depth	l _{s,min}	[mm]	6	8	10	12
Maximum screw-in depth	I _{s,max}	[mm]	14			
Clearance hole diameter	Ø d _f	[mm]	7	9	12	14
Minimum spacing	$S_{min} = S_{cr}$	[mm]	200			
Minimum edge distance	$C_{min} = C_{cr}$	[mm]	150			



Fastening screw or threaded rod:

- Minimum property class and materials according to table A1
- The length of the fastening screw or threaded rod shall be determined depending on thickness of fixture t_{fix} , admissible tolerances and maximum screw length $I_{s,max}$ as well as minimum screw-in depth $I_{s,min}$.

Upat Drop-in Anchor USA


Intended Use Installation parameters

EHS M8x25/30	EMS M8x25/30	EBB 10x25 EBB 10x30	USA M8x25 USA M8x30	6,4	11,0	18,0
EHS M8x40	EMS M8x40	EBB 10x40	USA M8x40	1		28,0
EHS M10x25/30	EMS M10x25/30	EBB 12x25	USA M10x25			18,0
		EBB 12x30	USA M10x30	7,9	13,0	10,0
EHS M10x40	EMS M10x40	EBB 12x40	USA M10x40			24,0
EHS M12x25	EMS M12x25	EBB 15x25	USA M12x25	10,2	16,5	15,2
EHS M12x50	EMS M12x50	EBB 15x50	USA M12x50	10.2	16.5	20.0
EHS M12x50	EMS M12x50	EBB 16x50	USA M12x50 D	10,2	16,5	30,0

Upat Drop-in Anchor USA

Intended Use Setting & Drilling tools Annex B 4

Table C1:Characteristic values due to design method B according to ETAG 001,
Annex C or design method B according to CEN/TS 1992-4: 2009

Anchor size		Property class	N	16		M8			M10			12/ 12D
Effective anchorage depth	h _{ef} [mm]	screw / rod	25	30	25	30	40	25	30	40	25	50
All load directions			-									
Characteristic	F ⁰ _{BK} ¹⁾	≥ A4-50	-		-		_	-	3		-	
resistance C12/15	[kN]	≥ 4.6	1,5	2	2		3	:	3	5	3	6
Characteristic	F ⁰ _{ВК} ¹⁾	≥ A4-50	-		-		_	-			-	
resistance C20/25 to C50/60	[kN]	≥ 4.6	2	3	3		5	4	5	7,5	4	9
Installation safety factor	$\gamma_2 = \gamma_{inst}$		1,0	1,2	1,0	1	,2	1,0	1	,2	1,0	
Characteristic spacing	s _{cr} [mm]		75	90	75	90	120	75	90	200	75	300
Characteristic edge distance	c _{cr} [mm]		38	45	38	45	60	38	45	100	38	150
Steel failure with lever	arm											
Characteristic resistance	M ⁰ _{Rk,s} ²⁾ [Nm]	A4-50	-	8	-	- 19			37		-	66
Partial safety factor	$\gamma_{\sf Ms}$		2,38									
Characteristic resistance	M ⁰ _{Rk,s} ²⁾ [Nm]	A4-70	-	11	-	2	:6	-	52		-	92
Partial safety factor	$\gamma_{\sf Ms}$						1,	56				
Characteristic resistance	M ⁰ _{Rk,s} ²⁾ [Nm]	A4-80	-	12	-	3	0	-	6	60	-	105
Partial safety factor	γ_{Ms}						1,:	33				
Characteristic resistance	M ⁰ _{Rk,s} ²⁾ [Nm]	4.6	6	,1		15		30			52	
Partial safety factor	γ_{Ms}						1,0	67				
Characteristic resistance	M ⁰ _{Rk,s} ²⁾ [Nm]	5.6	7,6 19				37			66		
Partial safety factor	γ_{Ms}						1,0	67				
Characteristic resistance	M ⁰ _{Rk,s} ²⁾ [Nm]	5.8	7,6 19				37				66	
Partial safety factor	$\gamma_{\sf Ms}$						1,:	25				
Characteristic resistance	M ⁰ _{Rk,s} ²⁾ [Nm]	8.8	1	2		30		60			105	
Partial safety factor	$\gamma_{\sf Ms}$						1,:	25				

¹⁾ The anchor is to be used only for multiple use for non-structural applications, the definition of multiple use according to the Member States is given in the informative Annex 1 of **ETAC** 001 Part 6 (accumum ester an)

ETAG 001 Part 6 (see: www.eota.eu)

²⁾ Characteristic bending moment $M^0_{Rk,s}$ for the equation (5.5) in ETAG 001, Annex C respectively Characteristic bending moment $M^0_{Rk,s}$ for the equation (D.5) in CEN/TS 1992-4-1

Upat Drop-in Anchor USA

Performances

Characteristic values for tension loads in concrete according to design method B

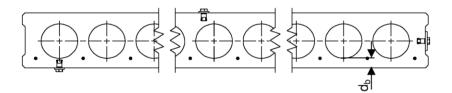

Annex C 1

Table C2:Characteristic values for h_{ef} = 25 mm in precast pre-stressed hollow
concrete slabs according to design method C with C30/37 to C50/60

Anchor size		Property	M6	M8	M10	M12		
Effective anchorage depth	h _{ef} [mm]	class screw / rod	25					
All Load directions			galva	anised	steel; wi	th rim		
Flange thickness	d₀ [mm]			≥ 35	(or 30 ³⁾)			
Characteristic resistance C30/37 to C50/60	F _{RK} ¹⁾ [kN]		2 3 4					
Installation safety factor	γ_2		1,0					
Characteristic spacing	$s_{cr} = s_{min} \ [mm]$		200					
Characteristic edge distance	$c_{\text{cr}} = c_{\text{min}} \; [mm]$		150					
Steel failure with lever arm		-						
Characteristic resistance	M ⁰ _{Rk,s} ²⁾ [Nm]	4.6	6,1	15	30	52		
Partial safety factor	γ_{Ms}				1,67			
Characteristic resistance	M ⁰ _{Rk,s} ²⁾ [Nm]	5.6	7,6	19	37	66		
Partial safety factor	γмѕ		1,67					
Characteristic resistance	M ⁰ _{Rk,s} ²⁾ [Nm]	5.8	7,6	7,6 19 37 6				
Partial safety factor	γмѕ		1,25					
Characteristic resistance	M ⁰ _{Rk,s} ²⁾ [Nm]	8.8	12	30	60	105		
Partial safety factor	γ_{Ms}		1,25					

¹⁾ The anchor is to be used only for multiple use for non-structural applications, the definition of multiple use according to the Member States is given in the informative Annex 1 of ETAG 001 Part 6 (see: www.eota.eu)

 ETAG 001 Part 6 (see: www.eota.eu)
 ²⁾ Characteristic bending moment M⁰_{Rk,s} for the equation (5.5) in ETAG 001, Annex C
 ³⁾ The anchor may be used in a flange thickness of 30 mm with the same characteristic resistance, but the drill hole is not allowed to cut a cavity (see Annex B5 Point 3). The use of the fischer stop drill EBB is recommended

Upat Drop-in Anchor USA

Performances

Characteristic values for tension loads in hollow core slabs according to design method C

Annex C 2

Table C3:Characteristic resistance under fire exposure³⁾ in concrete C20/25 to
C50/60 according to design method B, ETAG 001 Annex C or CEN/TS 1992-4: 2009

fire resistance class All load direct	USA		property class	M6x25	M6x30	M8x25	M8x30	M8x40	M10x25	M10x30	M10x40	M12x25	M12x50/ M12x50D					
R 30	Characteristic resistance C20/25 to C50/60							steel	0,5	0,5 0,6		0,9 1,3			0.0	1,8		
R 60					>16	0	,5	0,6	0,		0,6	0,9	1,5	0,6	2,3			
R 90		F ⁰ _{Rk,fi} ¹⁾ [kN]	or j	0	,4		0,	,6		0,	9		2,0					
R 120	020/20 10 000/00		≥ A4-50 ²⁾	0	,3		0,	,5		0,	,6	0,5	1,3					
R 30 – R 120 C	Characteristic spacing	s _{cr,fi} [mm]		100	120	100	120	160	100	120	160	100						
	Characteristic edge distance	c _{cr,fi} [mm]		50	115	50	140	140	50	140	160	50	200					

 $^{1)}$ In absence of other national regulations, a partial safety factor for the resistance of $\gamma_{m,fi}$ =1,0 under fire stress is recommended $^{2)}$ Not for M..x25 $^{3)}$ Not valid for precast pre-stressed hollow core slabs

Upat Drop-in Anchor USA

Performances Characteristic loads for fire resistances