

Einfach. Sicher. Upal

DECLARATION OF PERFORMANCE

No. 0061 - EN

1. Unique identification code of the product-type: Upat injection system UPM 55

2. Intended use/es:

Product	Intended use/es
Bonded anchor for use in concrete	Post-installed fastening in cracked or uncracked concrete, see appendix,
	especially Annexes B 1 to B 11.

3. Manufacturer: fischerwerke GmbH & Co. KG, Otto-Hahn-Straße 15, 79211 Denzlingen, Germany

4. Authorised representative: --

5. System/s of AVCP: 1

6a. Harmonised standard: ---

Notified body/ies: ---

6b. European Assessment Document: ETAG 001; 2013-04

European Technical Assessment: ETA-11/0418; 2016-09-30

Technical Assessment Body: DIBt

Notified body/ies: 1343 - MPA Darmstadt

7. Declared performance/s:

Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic values under static and quasi-static action for design according to TR 029 or CEN/TS 1992-4:2009, Displacements	See appendix, especially Annexes C 1 to C 10
Characteristic values for seismic performance categories C1 and C2 for design according to Technical Report TR 045, Displacements	See appendix, especially Annexes C 11 to C 14

Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A 1
Resistance to fire	NPD

8. Appropriate Technical Documentation and/or Specific Technical Documentation: ---

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Andreas Bucher, Dipl.-Ing.

Wolfgang Hengesbach, Dipl.-Ing., Dipl.-Wirtsch.-Ing.

1.V. A. BULL

i.V. W. Kgelal

Tumlingen, 2016-10-07

- This DoP has been prepared in different languages. In case there is a dispute on the interpretation the english version shall always prevail.

- The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Specific Part

1 Technical description of the product

The UPAT injection system UPM 55 is a bonded anchor consisting of a cartridge with injection mortar UPM 55 and a steel element.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic values under static and quasi-static action for design according to TR 029 or CEN/TS 1992-4:2009, Displacements	See Annex C 1 to C 10
Characteristic values for seismic performance categories C1 and C2 for design according to Technical Report TR 045, Displacements	See Annex C 11 to C 14

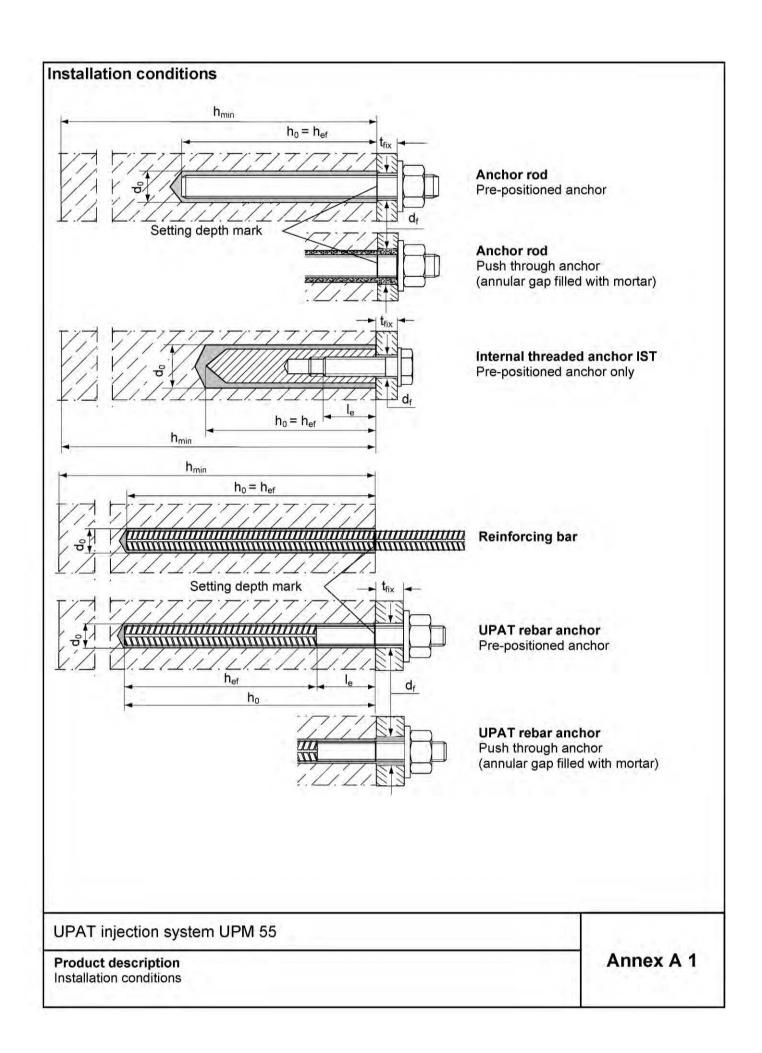
3.2 Safety in case of fire (BWR 2)

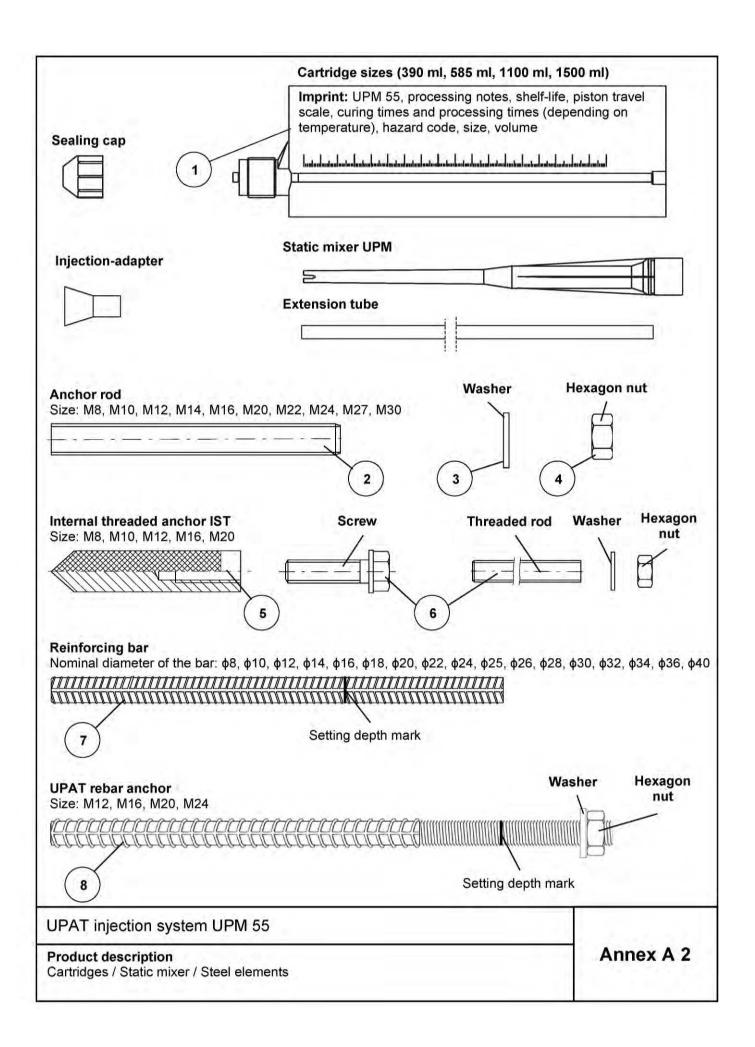
Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)


The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.


4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Appendix 3 / 30

Part	Designation		Ma	terial	
1	Mortar cartridge		Mortar, ha	rdener, filler	
	Steel grade	Steel, zinc plated		ess steel ∖4	High corrosion resistant steel C
2	Anchor rod	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated \geq 5 µm, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004 $f_{uk} \leq$ 1000 N/mm ² $A_5 > 12 \%$ fracture elongation ¹⁾	50, 7 EN ISO 3 1.4401; 1.4 1.4571; 1.4 1.4062, 1.4 EN 1008 f _{uk} ≤ 100 A ₅ >	rty class 0 or 80 506-1:2009 4404; 1.4578; 439; 1.4362; 4662, 1.4462 38-1:2014 00 N/mm ² 12 % elongation ¹⁾	$\begin{array}{c} \mbox{Property class} \\ 50 \mbox{ or } 80 \\ \mbox{EN ISO } 3506-1:2009 \\ \mbox{or property class } 70 \mbox{ with} \\ \mbox{f}_{yk} = 560 \mbox{ N/mm}^2 \\ 1.4565; \ 1.4529 \\ \mbox{EN } 10088-1:2014 \\ \mbox{f}_{uk} \leq 1000 \mbox{ N/mm}^2 \\ \mbox{A}_5 > 12 \ \% \\ \mbox{fracture elongation}^{1)} \end{array}$
3	Washer ISO 7089:2000	zinc plated ≥ 5 µm, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004	1.4578;1.4 1.4	; 1.4404; 571; 1.4439; 4362 88-1:2014	1.4565;1.4529 EN 10088-1:2014
4	Hexagon nut	Property class 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5 µm, ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004	50, 7 EN ISO 3 1.4401; 1.4 1.4571; 1.4	rty class 0 or 80 506-1:2009 404; 1.4578; 4439; 1.4362 38-1:2014	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
5	internal threaded anchor IST	Property class 5.8 ISO 898-1:2013 zinc plated ≥ 5 μm, ISO 4042:1999 A2K	EN ISO 3 1.4401; 1.4 1.4571; 1.4	rty class 70 506-1:2009 404; 1.4578; 4439; 1.4362 38-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
6	Screw or anchor / threaded rod for internal threaded anchor IST	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated \geq 5 µm, ISO 4042:1999 A2K fracture elongation $A_5 > 8 \%$	EN ISO 3 1.4401; 1.4 1.4571; 1.4 EN 1008 fracture	rty class 70 506-1:2009 4404; 1.4578; 4439; 1.4362 38-1:2014 elongation > 8 %	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014 fracture elongation $A_5 > 8 \%$
7	Reinforcing bar EN 1992-1-1:2004 and AC:2010, Annex C	Bars and de-coiled rods, cla f_{yk} and k according to NDP $f_{uk} = f_{tk} = k \cdot f_{yk}$			4+AC:2010
8	UPAT rebar anchor	Rebar part: Bars and de-coiled rods cla with f_{yk} and k according to N of EN 1992-1-1:2004+AC:2 $f_{uk} = f_{tk} = k \cdot f_{yk}$	NDP or NCL		s 70 or 80 -1:2009 9, 1.4401, 1.4404, 1.4571 9, 1.4362, 1.4062
¹⁾ Fr	acture elongation $A_5 > 8$	%for applications without re	quirements fo	or seismic perfo	ormance
	AT injection system U	IPM 55			Annex A 3

Specifications	s of intende	d use (p	art 1)						
Table B1: Ove	∍rview use ar	nd perfor	mance c	ategories	5				
Anchorages subje	ect to				UP	M 55 with			
		Anch	or rod	internal t anchor	threaded RG MI	Reinfor	cing bar		PAT anchor
]₿						
Hammer drilling with standard drill bit	######################################				all s	sizes			
Hammer drilling with hollow drill bit (Heller "Duster Expert" or Hilti "TE-CD, TE-YD")	Ī		No	minal drill	bit diamet	er (d₀) 12 r	mm to 35 n	nm	
Diamond drilling					all s	sizes			
Static and quasi	uncracked concrete	all sizes	Tables: C1, C5,	all sizes	Tables: C2, C5,	all sizes	Tables: C3, C5,	all sizes	Tables: C4, C5,
static load, in	cracked concrete		C6, C10		C7, C11		C8, C12		C9, C13
Seismic performance category (only	C1	M10 to M30	Tables: C14, C16, C17			φ10 to φ32	Tables: C15, C16, C18		
hammer drilling with Standard / hollow drill bits)	C2	M12, M16, M20, M24	Tables: C14, C16, C19		-				-
	dry or wet concrete				all s	sizes			
Use category	flooded hole				all s	sizes			
Installation temperature					+5 °C to	o +40 °C			
In-service	Temperature range l	-40 °C to				nperature + nperature +	⊦35 °C and ⊦60 °C)		
temperature	Temperature range II	-40 °C to				nperature + nperature +	⊦50 °C and ⊦72 °C)		
UPAT injectio	n system UP	'M 55							

Intended Use Specifications (part 1)

Specifications of intended use (part 2)

Base materials:

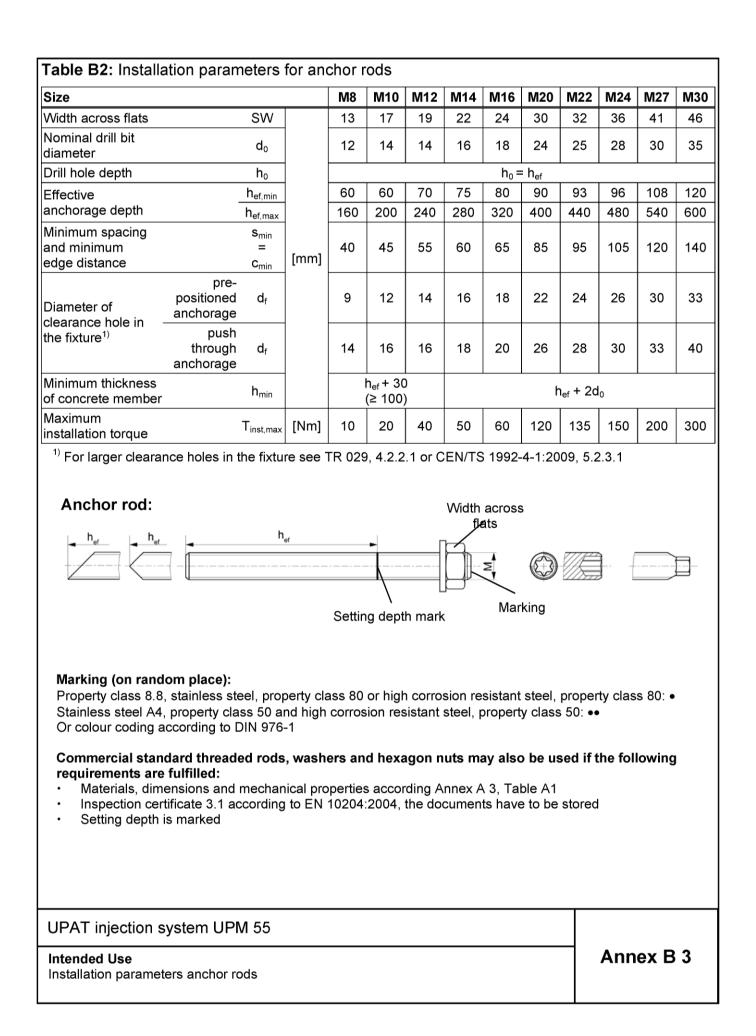
 Reinforced or unreinforced normal weight concrete Strength classes C20/25 to C50/60 according to EN 206-1:2000

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure, to permanently damp internal conditions or in other particular aggressive conditions (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

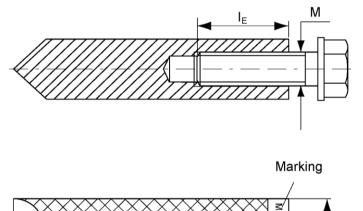
Design:

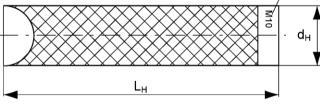

- Anchorages have to be designed by a responsible engineer with experience of concrete anchor design
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages under static or quasi-static actions are designed in accordance with EOTA Technical Report TR 029 "Design of bonded anchors" Edition September 2010 or CEN/TS 1992-4:2009
- · Anchorages under seismic actions (cracked concrete) have to be designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure
 - Fastenings in stand-off installation or with a grout layer are not allowed

Installation:

- Anchor installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- In case of aborted hole: The hole shall be filled with mortar
- Anchorage depth should be marked and adhered to on installation
- Overhead installation is allowed

UPAT injection system UPM 55

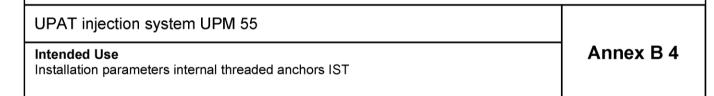

Intended Use Specifications (part 2)



Size			M8	M10	M12	M16	M20
Diameter of anchor	d _H		12	16	18	22	28
Nominal drill bit diameter	d _o		14	18	20	24	32
Drill hole depth	ho				$h_0 = h_{ef}$		
Effective anchorage depth (h _{ef} = L _H)	h _{ef}		90	90	125	160	200
Minimum spacing and minimum edge distance	S _{min} = [C _{min}	[mm]	55	65	75	95	125
Diameter of clearance hole in the fixture ¹⁾	d _f		9	12	14	18	22
Minimum thickness of concrete member	h _{min}		120	125	165	205	260
Maximum screw-in depth	I _{E,max}		18	23	26	35	45
Minimum screw-in depth	I _{E,min}		8	10	12	16	20
Maximum installation torque	T _{inst,max} [[Nm]	10	20	40	80	120

¹⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1

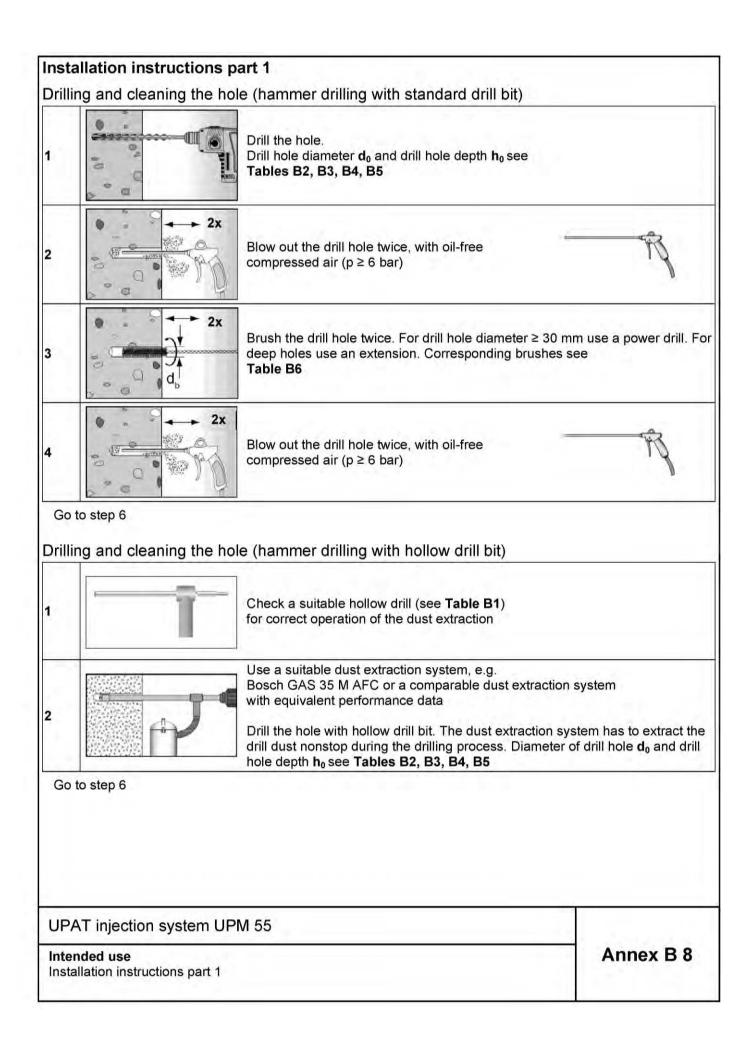
Internal threaded anchor IST

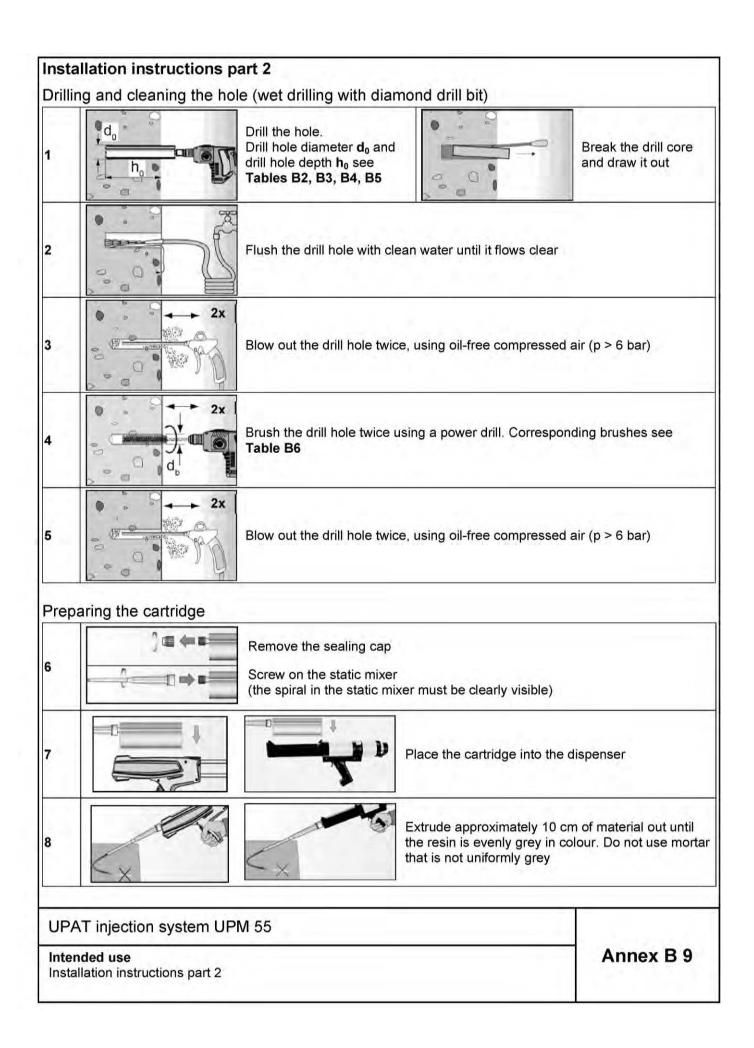


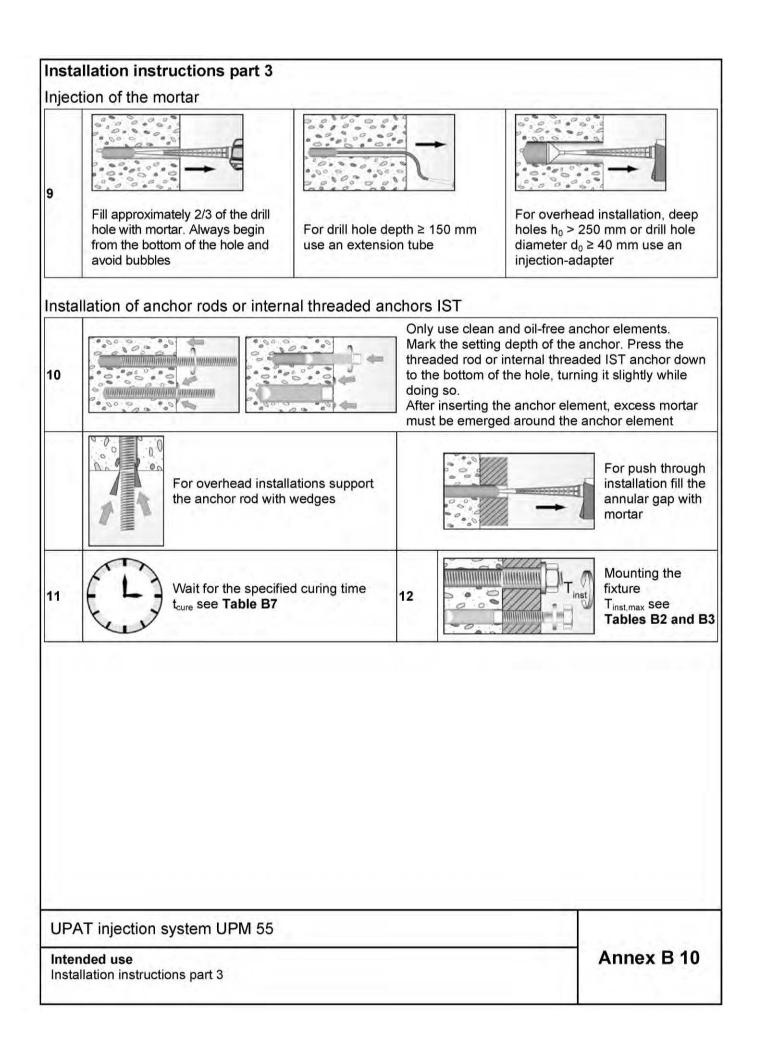
Marking: Anchor size e.g.: M10 Stainless steel additional A4

e.g.: **M10 A4**

High corrosion resistant steel additional C e.g.: M10 C


Retaining bolt or threaded rods (including nut and washer) must comply with the appropriate material and strength class of Annex A 3, Table A1




	r	φ	8 ¹⁾	10 ¹⁾	12 ¹⁾	14	16	18	20	22	24
Nominal drill bit diameter	d _o		10 12	12 14	14 16	18	20	25	25	30	30
Drill hole depth	ho						$h_0 = h_{ef}$				
Effective	h _{ef,min}		60	60	70	75	80	85	90	94	98
anchorage depth	h _{ef,max}	[mm]	160	200	240	280	320	360	400	440	480
Minimum spacing and minimum edge distance	S _{min} = C _{min}		40	45	55	60	65	75	85	95	105
Minimum thickness of concrete member	h _{min}			_{ef} + 30 ≥ 100)				h _{ef} +2	2d _o		
Nominal diameter of the ba	r	ф	25	26	28	30	32	34	36	40	
Nominal drill bit diameter	d _o		30	35	35	40	40	40	45	55	
Drill hole depth	ho						$h_0 = h_{ef}$				
ffective nchorage depth	h _{ef,min}	100	104	112	120	128	136	144	160		
anchorage depth	h _{ef,max}	[mm]	500	520	560	600	640	680	720	800	
Minimum spacing and minimum edge distance	S _{min} = C _{min}		110	120	130	140	160	170	180	200	
Minimum thickness of concrete member	\mathbf{h}_{\min}						h _{ef} + 2d)			
• KEEEEEE	h _e			88		E	BQ(Se	tting de	pth mar	H H k]
 The minimum value of EN 1992-1-1:2004+AC The rib height must be (φ = Nominal diameter 	::2010 within the	range:	0,05 · ¢	o ≤ h _{rib} ≤			s of				

Size				M1	2 ¹⁾	M16	M20	M24		
Nominal diameter of the bar		ф		1	2	16	20	25		
Width across flats		SW		1	9	24	30	36		
Nominal drill bit diameter		d _o		14	16	20	25	30		
Drill hole depth		ho				h _{ef}	+ l _e			
Effective		h _{ef,min}		7	0	80	90	96		
anchorage depth		h _{ef,max}		14	40	220	300	380		
Distance concrete surface to welded join		le	[mm]			10	00			
Minimum spacing and minimum edge distance		S _{min} = C _{min}		5	5	65	85	105		
Diameter of clearance hole in	pre- positioned anchorage	≤ d _f		1	4	18	22	26		
the fixture ²⁾	push through anchorage	≤ d _f		1	8	22	26	32		
Minimum thickness of concrete member	9-1-1-	h _{min}	1	h₀ + (≥ 1	· 30 00)		h ₀ + 2d ₀	h _o + 2d _o		
Maximum		T _{inst,max}	[Nm]	4	0	60	100	150		
¹⁾ Both drill bit diam ²⁾ For larger clearar	nce holes in t	used	41	R 029,	4.2.2.1 or	· CEN/TS 1992		3.1		
¹⁾ Both drill bit diam	nce holes in t	used he fixtu	re see T	R 029,	4.2.2.1 or		4-1:2009, 5.2.3 Wid			
¹⁾ Both drill bit diam ²⁾ For larger clearar UPAT rebar an	nce holes in the h	used he fixtu	re see T	R 029,	4.2.2.1 or	CEN/TS 1992	4-1:2009, 5.2.3	3.1 th across flats		
¹⁾ Both drill bit diam ²⁾ For larger clearar UPAT rebar an Φ	nce holes in the h	used he fixtu (for sta C (for h	re see T	R 029,	4.2.2.1 or	CEN/TS 1992	4-1:2009, 5.2.3 Wid	3.1 th across flats		

								BS					-		BSB	
Drill bit liameter	do	1	12	14	16	18	20	24	25	28	30	32	35	40	45	5
Steel brush liameter	d _b	[mm]	14	16	2	20	25	26	27	30		40		42	47	5
₹ able B7: Max	ximum		ssing	g time	e of ti	he m	ortar	and	minin							
	ring the d minim tempera	ium terr				num p	oroces		100	ure ma			um cu	ring tii	me ¹⁾	
	[°C]						t _{work} inutes]					t _{cure} [hou			
							120			-			40			
+5	to +10															-
+5 ≥ +10	to +20	ie i					30				_		18			
+5 ≥ +10 ≥ +20	to +20 to +30 to +40		oles th	ie curi	ng tim		30 14 7	doubl	ed							
+5 ≥ +10 ≥ +20 ≥ +30	to +20 to +30 to +40		bles th	e curi	ng tim		30 14 7	doubl	ed				18 10			

nsta	allation reinforcing bars	and UPAT rebar a	nchoi					
0		Only use clean and o setting depth. Turn v UPAT rebar anchor i	vhile u	sing force to	push the	reinfor	cement ba	ar or the
U		When the setting de from the mouth of th			d, excess	mortar	must be	emerged
1	Wait for the t _{cure} see Tal	specified curing time ble B7	12	0.00	þ.	T _{inst}		the fixture ee Table B5
JP	AT injection system UP	M 55						

Table	e C1: Character shear load	istic value: d of UPAT												
Size					M 8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Beari	ng capacity unde	r tensile loa	d, ste	el fail	ure				-				-	
in	Steel zinc plated		5.8		19	29	43	58	79	123	152	177	230	281
oear icity	"		8.8		29	47	68	92	126	196	243	282	368	449
act.k apa	Steel zinc plated ăStainless steel A4 and	Property class	50	[kN]	19	29	43	58	79	123	152	177	230	281
Charact.bearin g capacity N	High corrosion		70		26	41	59	81	110	172	212	247	322	393
	resistant steel C		80		30	47	68	92	126	196	243	282	368	449
Partia	I safety factors ¹⁾													
2	Steel zinc plated		5.8							50				
afet ^{(Ms,N}		Duonoutri	8.8						,	50				
Partial safety factor _{YMs,N}	Stainless steel A4 and	Property class	50	[-]						86				
Part fac	ringin controllion		70						1,502)	/ 1,87				
	resistant steel C		80						1,	60				
	ng capacity unde	r shear load	, stee	l failu	re									
witho	ut lever arm													
y Y	Steel zinc plated		5.8		9 15	15	21	29 46	39 63	61	76	89	115	141
.bea		Property	8.8 50		9	23 15	34 21	46 29	39	98 61	122 76	141 89	184 115	225 141
Charact.bearin g capacity	Steel zinc plated additional Static States Steel A4 and	class	70	[kN]	13	20	30	40	55	86	107	124	161	197
Cha g	High corrosion resistant steel C		80		15	20	34	40	63	98	122	141	184	225
Ductili	ity factor acc. to CE	=N/TS			15	25	54	40			122	141	104	225
	4-5:2009 Section 6		k ₂	[-]					1	,0				
with le	ever arm	I												
	Steel zinc plated		5.8		19	37	65	104	166	324	447	560	833	1123
act.		Broperty	8.8		30	60	105	167	266	519	716	896	1333	1797
nd	Stainless steel	Property class		[Nm]	19	37	65	104	166	324	447	560	833	1123
ق ن	High corrosion ک		70		26	52	92	146	232	454	626	784	1167	1573
	^c resistant steel C		80		30	60	105	167	266	519	716	896	1333	1797
Partia	I safety factors ¹⁾			I						0.5				
< ئ ر	Steel zinc plated		5.8 8.8							25 25				
Partial safety factor _{YMs,V}	Stainless steel	Property	50						,	23 38				
rtial	A4 and	class	70	[-]						/ 1,56				
Pa fa	High corrosion resistant steel C		80						,	33				
¹⁾ In a ²⁾ On	absence of other n ly admissible for s	ational regul teel C, with f	ations	≥ 0,8	and A	₅ > 12 '	% (e.g.	. UPAT)			
UPA	T injection syst	em UPM 5	5											
Chara	ormances acteristic steel bea lard threaded rods		of UF	PAT a	nchor	rods ar	nd					Ann	ex C	1

Size					M8	M10	M12	M16	M20
Bearing capacity u	undei	r tensile lo	ad, ste	el fail	ure				
		Property	5.8		19	29	43	79	123
Characteristic		class	8.8		29	47	68	108	179
bearing capacity I with screw	N _{Rk,s}	Property	A4	[kN]	26	41	59	110	172
with sciew		class 70	С		26	41	59	110	172
Partial safety facto	ors ¹⁾								ŀ
		Property	5.8				1,50		
Partial safety		class	8.8	. 1			1,50		
factor	Ms,N	Property	A4	[-]			1,87		
		class 70	С				1,87		
Bearing capacity u	undei	r shear loa	d, stee	l failu	re				
without lever arm									
Obanastariatia		Property	5.8		9,2	14,5	21,1	39,2	62,0
Characteristic bearing capacity V	1	class	8.8	[kN]	14,6	23,2	33,7	54,0	90,0
with screw	RK,S	Property	A4	[[(]]]]	12,8	20,3	29,5	54,8	86,0
		class 70	С		12,8	20,3	29,5	54,8	86,0
Ductility factor acc. 1992-4-5:2009 Sec			k ₂	[-]			1,0		
with lever arm									
		Property	5.8		20	39	68	173	337
Characteristic bending moment M	л ^о	class	8.8	[Nm]	30	60	105	266	519
with screw	RK,S	Property	A4	[1411]	26	52	92	232	454
		class 70	С		26	52	92	232	454
Partial safety facto	ors ¹⁾								
		Property	5.8				1,25		
Partial safety		class	8.8	[-]			1,25		1,25 / 1,50 ²
factor	Ms,V	Property	A4	[]]			1,56		
		class 70	С				1,56		

²⁾ Only for steel failure without lever arm

UPAT injection system UPM 55

Table C3: Characteristic valshear load of reir				el bear	ing	са	paci	i ty ur	nder	ter	nsile	э /					
Nominal diameter of the bar		φ	8	10 12	14	16	18 2	20 22	24	25	26	28	30	32	34	36	40
Bearing capacity under tensile	load, ste		ure														
Characteristic bearing capacity	N _{Rk.s}	[kN]						A	.s · f _u	1) k							
Bearing capacity under shear lo			ire														
without lever arm																	
Characteristic bearing capacity	V _{Rk,s}	[kN]						0,5	· A _s	• f _{uk} 1)						
Ductility factor acc. to CEN/TS 1992-4-5:2009 Section 6.3.2.1	k ₂	[-]							0,8								
with lever arm																	
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]						1,2 ·	W_{el}	$\cdot \mathbf{f}_{uk}$	1)						
Table C4: Characteristic val shear load of UP					ing	са	paci	i ty ur	nder	⁻ ter	nsile	e /					
Size				M12			М	16			M20)			M2	4	
Bearing capacity under tensile	load, ste	el fail	ure						-				_				
Characteristic bearing capacity	N _{Rk,s}	[kN]		63			1	11			173	;			27	D	
Partial safety factors ¹⁾																	
Partial safety factor	γMs,N	[-]							1,4								
Bearing capacity under shear lo	oad, stee	l failu	ire														
without lever arm																	
Characteristic bearing capacity	$V_{Rk,s}$	[kN]		30			5	5			86				12	4	
Ductility factor acc. to CEN/TS 1992-4-5:2009 Section 6.3.2.1	k ₂	[-]							1,0								
with lever arm																	
Characteristic bearing capacity	M⁰ _{Rk,s}	[Nm]		92			23	33			454	,			78	5	
Partial safety factors ¹⁾																	
Partial safety factor	γ̂Ms,∨	[-]							1,56	6							
¹⁾ In absence of other national re																	
UPAT injection system UPN Performances Characteristic steel bearing capa		nforci	ng k	oars and	1						_		٩n	ne	x C	; 3	
UPAT rebar anchors	-		2														

	eneral design fa lear load; uncrac					-		-	ity ι	uno	der	ter	nsile	/				
Size											All	Si	zes					
Bearing capac	ity under tensile lo	ad																
	CEN/TS 1992-4:20		ction 6	.2.2	.3											_		
Uncracked con	crete	k_{ucr}									1	10,	1					
Cracked concre	ete	k _{cr}	[-]									7,2	2					
Factors for the	compressive stre	ngth o	f conc	rete	> (C20/2	25											
	C25/30										1	1,0	2					
-	C30/37										-	1,04	4					
Increasing	C35/45										-	1,00	6					
factor -	C40/50	Ψ_{c}	[-]								1	1,0	7					
for τ_{Rk} .	C45/55											1,0						
	C50/60											1,09						
Splitting failur												.,.	-					
- -	h / h _{ef} ≥ 2,0										1,	,0 ł	۱ _{ef}					
Edge distance	2,0 > h / h _{e f} > 1,3	C _{cr,sp}								4			1,8 ł	า				
	h / h _{ef} ≤ 1,3		[mm]								2,2	26	h _{ef}					
Spacing		S _{cr,sp}	1								2	Ccr	sp					
Concrete cone	failure acc. to CEN	1/TS 1	992-4-	5:20	09	Sect	io	n 6.2.	3.2									
Edge distance		C _{cr,N}	[mm]								1,	,5 ł	۱ _{ef}					
Spacing		S _{cr,N}	[]								2	Ccr	,N					
Bearing capac	ity under shear loa	d																
Installation sat	fety factors																	
		γ2																
All installation o	onditions	=	[-]									1,0)					
Concrete nm.		γinst																
Concrete pry-c Factor k acc. to																		
	8 resp. k₃ acc. to	k ₍₃₎	[-]									2,0)					
Concrete edge	failure																	
The value of h _{er} under shear loa	$_{f}$ (= $ _{f}$)		[mm]								min	(h _{et}	; 8d)					
Calculation diar	neters																	
Size				M	3	M10		M12	M1	4	M16	6	M20	M22	M24	4	M27	M30
UPAT anchor re standard thread		d		8		10		12	14	1	16		20	22	24		27	30
internal threade	ed anchors IST	d	[mm]	12	2	16		18	-		22		28	-	-		-	-
UPAT rebar and	chors	d		-		-		12	-		16		20	-	25		-	-
Nominal diame	ter of the bar		ф	8	10	12	14	4 16	18	20	22	24	25	26 28	3 30	32	34	36 40
Reinforcing bar	,	d	[mm]	8	10	12	14	4 16	18	20	22	24	25	26 28	3 30	32	34	36 40
Performances	ion system UPM		vracteri	stic		ring		nacit			tens		1	_	An	ne	ex C	4

General design factors relating to the characteristic bearing capacity under shear load

Table C6: Characteristic threaded rod							or roo	ds an	d stai	ndard		
uncracked or	· cracke	d concr	1									
Size			M8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Combined pullout and cond												
Calculation diameter	d	[mm]	8	10	12	14	16	20	22	24	27	30
Uncracked concrete	• • • •			1								
Characteristic bond resista							(a)					
Hammer-drilling with standard	<u>a arili bit o</u>	<u>r nollow a</u>										
Tem- I: 35 °C / 60 °C	$- \tau_{Rk,ucr}$	[N/mm ²]	16	16	15	14	14	13	13	13	12	12
range II: 50 °C / 72 °C	•RK,uci		15	14	14	13	13	12	12	12	11	11
Hammer-drilling with standard	<u>d drill bit o</u>	<u>r hollow d</u>	<u>rill bit (</u>	floode	d hole)							
Tem- I: 35 °C / 60 °C		EN 1 (100 - 27	16	16	15	13	13	11	11	10	10	9
perature II: 50 °C / 72 °C	$-\tau_{Rk,ucr}$	[N/mm ²]	15	14	14	13	12	11	10	10	9	9
Diamond-drilling (dry and wet	concrete	as well as	s floode	ed hole	e)							
Tem- I: 35 °C / 60 °C			16	15	13	12	12	10	10	10	9	9
perature II: 50 °C / 72 °C	$- \tau_{Rk,ucr}$	[N/mm ²]	15	14	12	11	11	10	9	9	8	8
Installation safety factors												
Dry and wet concrete					1	,0				1	,2	
Flooded hole	$-\gamma_2 = \gamma_{inst}$	[-]					1	,4				
Cracked concrete												
Characteristic bond resista	nce in cra	acked cor	ncrete	C20/2	5							
Hammer-drilling with standard	d drill bit o	r hollow d	rill bit a	and dia	mond-	drilling	(dry a	nd we	t concr	ete)		
Tem- I: 35 °C / 60 °C			7	7	7	7	6	6	7	7	7	7
perature II: 50 °C / 72 °C	$- \tau_{Rk,cr}$	[N/mm ²]	7	7	7	7	6	6	7	7	7	7
Hammer-drilling with standard	d drill bit o	r hollow d	rill bit a	and dia	mond-	drilling	(flood	ed hol	e)			
Tem- I: 35 °C / 60 °C			6	7,5	7,5	7	6	6	6	6	6	6
perature	$-\tau_{Rk,cr}$	[N/mm ²]					-	-	-			
range II: 50 °C / 72 °C			6	7	7	7	6	6	6	6	6	6
Installation safety factors												
Dry and wet concrete	$-\gamma_2 = \gamma_{inst}$	[-]				,0					,2	
Flooded hole					1,2					1,4		
UPAT injection system Performances Characteristic values for state anchor rods and standard th	ic or quas									Ann	ex C	5

Size			M8	M10	M12	M16	M20
Combined pullout and cor	crete con	e failure		-	-	-	
Calculation diameter	d	[mm]	12	16	18	22	28
Uncracked concrete							
Characteristic bond resist	ance in un	cracked o	concrete C2	0/25			
Hammer-drilling with standa	<u>rd drill bit o</u>	<u>r hollow d</u>	<u>rill bit (dry an</u>	id wet concre	te)		
Tem- I: 35 °C / 60 °C		21	15	14	14	13	12
perature range II: 50 °C / 72 °C	$\tau_{Rk,ucr}$	[N/mm ²]	14	13	13	12	11
Hammer-drilling with standa	rd drill bit o	r hollow d	rill bit (floode	d hole)			
Tem- I: 35 °C / 60 °C			14	12	12	11	10
perature range II: 50 °C / 72 °C	$\tau_{Rk,ucr}$	[N/mm ²]	13	12	11	10	9
Diamond-drilling (dry and w		as well as	s flooded hole	e)			
Tem- I: 35 °C / 60 °C			13	12	11	10	9
perature		[N/mm ²]	13	11	10	9	8
lange	,		12	11	10	5	0
Installation safety factors				1.0		1	,2
Dry and wet concrete Flooded hole	$-\gamma_2 = \gamma_{inst}$	[-]		1,0	1,4	I	,∠
Cracked concrete					1,4		
Characteristic bond resist	ance in cra	acked cor	ocrete C20/2	25			
Hammer-drilling with standa				-	drv and we	t concrete)	
Tem- I: 35 °C / 60 °C			7	6	6	7	7
perature II: 50 °C / 72 °C	Tek ar	[N/mm ²]	7	6	6	7	7
Hammer-drilling with standa		l r bollow d		-	-		
Tem- I: 35 °C / 60 °C			7	6,5	6	6	6
perature	— <i>T</i> DI:	[N/mm ²]	-	-			
range II: 50 °C / 72 °C	;		7	6	6	6	6
Installation safety factors							
Dry and wet concrete	$-\gamma_2 = \gamma_{inst}$	[-]		1,0			,2
Flooded hole	12 11130			1,2		1	,4

UPAT injection system UPM 55

Performances

Characteristic values for static or quasi-static action under tensile load for internal threaded anchors IST (uncracked or cracked concrete)

Table C8: Characteristic va in hammer or dia									•			d c	on	cre	te				
Nominal diameter of the bar		φ	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Combined pullout and concret	e cone	. ·			•		10	10								-	01		
Calculation diameter	d	[mm]	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Uncracked concrete		F1																	
Characteristic bond resistance	in un	cracked (con	cret	e C	20/2	25												
Hammer-drilling with standard dr	ill bit o	r hollow d	Irill k	oit (c	lry a	nd v	wet	con	crete	<u>e)</u>									
Tem- I: 35 °C / 60 °C		_	16	16	15	14	14	14	13	13	13	13	13	12	12	12	12	12	11
perature ———— range II: 50 °C / 72 °C	Rk,ucr	[N/mm ²]	15	14	14	13	13	13			12	12	11	11	11	11	11	11	10
Hammer-drilling with standard dr	ill bit o	r hollow d																	
Tem- I: 35 °C / 60 °C			16	<u> </u>	14			_	11	11	10	10	10	10	9	9	9	8	8
perature	Rk,ucr	[N/mm ²]	15	14	13	12	12	11		10		9	9	9	9	8	8	8	8
Diamond-drilling (dry and wet cor	ncrete	as well as						•••	••	10	10	Ŭ	Ŭ	Ŭ	•	•	•	0	-
Tem- I: 35 °C / 60 °C		_	16			12	12	11	10	10	10	9	9	9	9	8	8	8	7
perature ————————————————————————————————————	Rk,ucr	[N/mm ²]	15	14	12	11	11	10	10	9	9	9	8	8	8	8	7	7	7
Installation safety factors																			
Dry and wet concrete						1,0								1	,2				
Flooded hole γ_2	= γ_{inst}	[-]									1,4								
Cracked concrete																			
Characteristic bond resistance	in cra	cked co	ncre	ete (C20/	25													
Hammer-drilling with standard dr	ill bit o	<u>r hollow d</u>	Irill k	<u>pit a</u>	<u>nd d</u>	iam	ond	<u>-dril</u>	ling	(dry	and	d we	et co	oncr	<u>ete)</u>				
Tem- I: 35 °C / 60 °C	-	 [N/mm²]	7	7	7	7	6	6	6	7	7	7	7	7	7	5	5	5	5
range II: 50 °C / 72 °C	$\tau_{Rk,cr}$		7	7	7	7	6	6	6	7	7	7	7	7	7	5	5	5	5
Hammer-drilling with standard dr	ill bit o	<u>r hollow d</u>	Irill k	<u>pit a</u>	<u>nd d</u>	iam	ond	<u>-dril</u>	ling	(floo	odeo	<u>d ho</u>	<u>le)</u>						
Tem- I: 35 °C / 60 °C		[N1/mam ²]	6	7,5	6,5	6,5	6,5	6	6	6	6	6	6	6	6	5	5	5	5
perature ———————— range II: 50 °C / 72 °C	$\tau_{Rk,cr}$	[N/mm ²]	6	6,5	6,5	6	6	6	6	6	6	6	6	6	6	5	5	5	5
Installation safety factors				-										-					
Dry and wet concrete		r 1				1,0								1	,2				
Flooded hole	= γ_{inst}	[-]			1,	2								1,4					
UPAT injection system UP	M 55														An	ne	хC	; 7	

Characteristic values for static or quasi-static action under tensile load for reinforcing bars (uncracked or cracked concrete)

			M12	M16	M20	M24
Combined pullout and cond	rete con	e failure			-	
Calculation diameter	d	[mm]	12	16	20	25
Uncracked concrete						
Characteristic bond resista	nce in un	cracked o	concrete C20/2	5		
Hammer-drilling with standard	d drill bit o	<u>r hollow d</u>	rill bit (dry and w	<u>vet concrete)</u>		
Tem- I: 35 °C / 60 °C		[N] /ma.ma ² 1	15	14	13	13
perature ————————————————————————————————————	$- \tau_{Rk,ucr}$	[N/mm ²]	14	13	12	12
Hammer-drilling with standard	d drill bit o	r hollow d	rill bit (flooded h	ole)		
Tem- I: 35 °C / 60 °C		2	14	12	11	10
perature range II: 50 °C / 72 °C	$- \tau_{Rk,ucr}$	[N/mm ²]	13	12	11	9
Diamond-drilling (dry and wet	concrete	as well as				
Tem- I: 35 °C / 60 °C	301101010		13	12	10	9
perature	$-\tau_{Rk,ucr}$	[N/mm ²]	13	12	10	9
lange			12	11	10	9
Installation safety factors				1.0		1.0
Dry and wet concrete Flooded hole	$-\gamma_2 = \gamma_{inst}$	[-]		1,0	,4	1,2
Cracked concrete				I	,4	
Characteristic bond resista	nce in cr	acked cor	crete C20/25			
Hammer-drilling with standard				nd-drilling (dry a	and wet concrete)
Tem- I: 35 °C / 60 °C			7	6	6	7
perature	$- \tau_{Rk,cr}$	[N/mm ²]	7	-	-	
lange				6	6	7
Hammer-drilling with standard	d drill bit o	<u>r hollow d</u>				
Tem- I: 35 °C / 60 °C	- τ _{Rk,cr}	[N/mm ²]	7	6	6	6
range II: 50 °C / 72 °C	•RK,G	[]	7	6	6	6
Installation safety factors				1,0		1,2
Installation safety factors Dry and wet concrete	$-\gamma_2 = \gamma_{inst}$	[-]				4

Performances

Characteristic values for static or quasi-static action under tensile load for UPAT rebar anchors (uncracked or cracked concrete)

Size	M8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Displacement-Factors	for tens	ile load ¹⁾	-							
Uncracked or cracked	concret	e; Tempe	erature ra	ange I, II						
δ _{N0-Factor} [mm/(N/mm²)]	0,07	0,08	0,09	0,09	0,10	0,11	0,11	0,12	0,12	0,13
δ _{N∞-Factor}	0,11	0,12	0,13	0,14	0,15	0,16	0,17	0,18	0,19	0,19
Displacement-Factors	for shea	r load ²⁾								
Uncracked or cracked	concret	e; Tempe	erature ra	ange I, II						
δ _{V0-Factor} [mm/kN]	0,18	0,15	0,12	0,10	0,09	0,07	0,07	0,06	0,05	0,05
δ _{V∞-Factor}	0,27	0,22	0,18	0,16	0,14	0,11	0,10	0,09	0,08	0,07

Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\mathsf{N}^{\infty}} = \delta_{\mathsf{N}^{\infty}\text{-}\mathsf{Factor}} \cdot \tau_{\mathsf{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

Calculation of effective displacement:

 $\delta_{\mathsf{V0}} = \delta_{\mathsf{V0-Factor}} \cdot \mathsf{V}_{\mathsf{Ed}}$

 $\delta_{\mathsf{V}\infty} = \delta_{\mathsf{V}\infty\text{-}\mathsf{Factor}} \cdot \mathsf{V}_{\mathsf{Ed}}$

(V_{Ed}: Design value of the applied shear force)

Table C11: Displacements for internal threaded anchors IST

Size		M8	M10	M12	M16	M20
Displacer	nent-Factors	for tensile load ¹⁾		-		-
Uncracke	d or cracked	concrete; Tempe	erature range I, II			
δ _{N0-Factor}	mm/(N/mm²)]	0,09	0,10	0,10	0,11	0,13
δ _{N∞-Factor} L		0,13	0,15	0,16	0,17	0,19
Displacer	nent-Factors	for shear load ²⁾				
Uncracke	d or cracked	concrete; Tempe	erature range I, II			
$\delta_{V0-Factor}$	[mm/kN]	0,12	0,09	0,08	0,07	0,05
δ _{V∞-Factor}	[mm/kin]	0,18	0,14	0,12	0,10	0,08
¹⁾ Calcula	ation of effecti	ve displacement:		²⁾ Calculation of	effective displacen	nent:
$\delta_{N0} = \delta$	$\delta_{N0-Factor} \cdot \tau_{Ed}$			$\delta_{V0} = \delta_{V0-Factor}$.	V_{Ed}	
$\delta_{N\infty} = \delta$	δ _{N∞-Factor} · τ _{Ed}			$\delta_{V\infty} = \delta_{V\infty\text{-Factor}}$	$\cdot V_{Ed}$	

(τ_{Ed} : Design value of the applied tensile stress)

(V_{Ed}: Design value of the applied shear force)

UPAT injection system UPM 55

Performances Displacements for anchor rods and internal threaded anchors IST

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Nominal di	^{ameter} φ	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		ent-Factors	for t	ensile	e load	d ¹⁾				<u> </u>									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	•						ture	range),										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										0,11	0,12	0,12	0,12	0,13	0,13	0,13	0,14	0,14	0,15
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	δ _{N∞-Factor} [m	im/(N/mm²)]	0,11	0,12	0,13	0,14	0,15	0,16	0,16	6 0,17	0,18	0,18	0,18	0,19	0,19	0,20	0,20	0,21	0,22
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									-										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Uncracked	or cracked	cond	rete;	Tem	pera	ture	range	e I, II										
$\begin{split} & \underbrace{S_{Vo-Factor} & 1 & 0,27 & 0,22 & 0,18 & 0,16 & 0,14 & 0,12 & 0,11 & 0,10 & 0,09 & 0,08 & 0,08 & 0,07 & 0,07 & 0,06 & 0,06 \\ & 1^{1} \text{ Calculation of effective displacement:} & 2^{1} \text{ Calculation of effective displacement:} & \\ & & \delta_{N0} & = \delta_{N0-Factor} \cdot \tau_{Ed} & \delta_{Vo} & = \delta_{Vo-Factor} \cdot \nabla_{Ed} & \\ & & \delta_{No} & = \delta_{No-Factor} \cdot \tau_{Ed} & \delta_{Vo} & = \delta_{Vo-Factor} \cdot \nabla_{Ed} & \\ & & (\tau_{Ed}: \text{ Design value of the applied tensile stress}) & (V_{Ed}: \text{ Design value of the applied shear force}) \\ \hline \\ \textbf{Table C13: Displacements for UPAT rebar anchors} \\ \hline \textbf{Size M12 M16 M20 M24} & \\ \hline \textbf{Displacement-Factors for tensile load^{1}} & \\ \hline \textbf{Uncracked or cracked concrete; Temperature range I, II} & \\ \hline \\ \hline & \delta_{No-Factor} & [mm/(N/mm^2)] & 0,09 & 0,10 & 0,11 & 0,12 & \\ \hline & \delta_{No-Factor} & \hline & [mm/(N/mm^2)] & 0,13 & 0,15 & 0,16 & 0,18 & \\ \hline \textbf{Displacement-Factors for shear load^{2}} & \\ \hline \textbf{Uncracked or cracked concrete; Temperature range I, II} & \\ \hline \\ \hline & \delta_{Vo-Factor} & [mm/kN] & 0,12 & 0,09 & 0,07 & 0,06 & \\ \hline & \delta_{Vo-Factor} & \hline & [mm/kN] & 0,12 & 0,09 & 0,07 & 0,06 & \\ \hline & \delta_{Vo-Factor} & \hline & [mm/kN] & 0,12 & 0,09 & 0,07 & 0,06 & \\ \hline & \delta_{Vo-Factor} & \cdot \tau_{Ed} & \delta_{Vo-Factor} \cdot \vee_{Ed} & \\ \hline \end{array}$	δ√0-Factor	[mm/kN]																	
$\begin{split} \delta_{N0} &= \delta_{N0-Factor} \cdot \tau_{Ed} & \delta_{V0} = \delta_{V0-Factor} \cdot V_{Ed} \\ \delta_{N\sigma} &= \delta_{N\sigma-Factor} \cdot \tau_{Ed} & \delta_{V\sigma} = \delta_{V\sigma-Factor} \cdot V_{Ed} \\ (\tau_{Ed}: Design value of the applied tensile stress) & (V_{Ed}: Design value of the applied shear force) \\ \hline \textbf{Table C13: Displacements for UPAT rebar anchors} \\ \hline \textbf{Size} & \textbf{M12} & \textbf{M16} & \textbf{M20} & \textbf{M24} \\ \hline \textbf{Displacement-Factors for tensile load^{1}} \\ \hline \textbf{Uncracked or cracked concrete; Temperature range I, II} \\ \hline \delta_{No-Factor} & [mm/(N/mm^2)] & 0,09 & 0,10 & 0,11 & 0,12 \\ \hline \delta_{No-Factor} & [mm/(N/mm^2)] & 0,09 & 0,15 & 0,16 & 0,18 \\ \hline \textbf{Displacement-Factors for shear load^{2}} \\ \hline \textbf{Uncracked or cracked concrete; Temperature range I, II} \\ \hline \delta_{Vo-Factor} & [mm/kN] & 0,12 & 0,09 & 0,07 & 0,06 \\ \hline \delta_{Vo-Factor} & [mm/kN] & 0,12 & 0,09 & 0,07 & 0,06 \\ \hline \delta_{Vo-Factor} & [mm/kN] & 0,18 & 0,14 & 0,11 & 0,09 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	δ _{V∞-Factor}		0,27	0,22	0,18	0,16	0,14	0,12	0,11	0,10	0,09	0,09	0,08	0,08	0,07	0,07	0,06	0,06	0,05
$\begin{split} \delta_{N_{00}} &= \delta_{N_{00}\text{-Factor}} \cdot \tau_{Ed} & \delta_{V_{00}} = \delta_{V_{00}\text{-Factor}} \cdot V_{Ed} \\ (\tau_{Ed}: \text{ Design value of the applied tensile stress}) & (V_{Ed}: \text{ Design value of the applied shear force}) \\ \hline \textbf{Table C13: Displacements for UPAT rebar anchors} \\ \hline \textbf{Size} & \textbf{M12} & \textbf{M16} & \textbf{M20} & \textbf{M24} \\ \hline \textbf{Displacement-Factors for tensile load}^{1)} & \\ \hline \textbf{Uncracked or cracked concrete; Temperature range I, II} \\ \hline \delta_{N_{0}\text{-Factor}} & [mm/(N/mm^{2})] & 0,09 & 0,10 & 0,11 & 0,12 \\ \hline \delta_{N_{0}\text{-Factor}} & [mm/(N/mm^{2})] & 0,09 & 0,15 & 0,16 & 0,18 \\ \hline \textbf{Displacement-Factors for shear load}^{2} & \\ \hline \textbf{Uncracked or cracked concrete; Temperature range I, II} \\ \hline \delta_{V_{0}\text{-Factor}} & [mm/kN] & 0,12 & 0,09 & 0,07 & 0,06 \\ \hline \delta_{V_{0}\text{-Factor}} & [mm/kN] & 0,12 & 0,09 & 0,07 & 0,06 \\ \hline \delta_{V_{0}\text{-Factor}} & [mm/kN] & 0,18 & 0,14 & 0,11 & 0,09 \\ \hline \end{tabular}^1 \text{ Calculation of effective displacement:} \\ \hline \delta_{N_{0}\text{-}} = \delta_{N_{0}\text{-Factor}} \cdot \tau_{Ed} & \delta_{V_{0}\text{-}} = \delta_{V_{0}\text{-Factor}} \cdot V_{Ed} \\ \hline \end{split}$	¹⁾ Calculat	ion of effect	ive di	splace	emen	t:				²⁾ Ca	alcula	tion of	effec	tive c	lispla	ceme	nt:		
(τ_{Ed} : Design value of the applied tensile stress) (V_{Ed} : Design value of the applied shear force) Table C13: Displacements for UPAT rebar anchors Size M12 M16 M24 Displacement-Factors for tensile load ¹⁾ Uncracked or cracked concrete; Temperature range I, II δ_{N0} -Factor $[mm/(N/mm^2)]$ $0,09$ $0,10$ $0,11$ $0,12$ Displacement-Factors for shear load ² Uncracked or cracked concrete; Temperature range I, II δ_{N0} -Factor $[mm/kN]$ $0,12$ $0,09$ $0,07$ $0,06$ $\delta_{Vo-Factor}$ $[mm/kN]$ $0,12$ $0,09$ $0,07$ $0,06$ $\delta_{Vo-Factor}$ $[mm/kN]$ $0,12$ $0,09$ $0,07$ $0,06$ $0,07$ $0,06$ $0,07$ $0,06$ $0,014$ $0,11$ $0,09$ $0,07$ $0,06$ $0,07$ $0,06$ $0,07$ $0,06$ $0,07$ $0,06$ $0,07$ $0,06$ $0,07$ $0,06$ $0,07$ $0,06$ $0,07$ $0,06$ $0,07$ $0,06$ $0,07$ $0,06$ <td>$\delta_{N0} = \delta_{N0}$</td> <td>0-Factor ・τ_{Ed}</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>δ_V</td> <td>$_0 = \delta_V$</td> <td>0-Factor</td> <td>$\cdot V_{Ed}$</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	$\delta_{N0} = \delta_{N0}$	0-Factor ・τ _{Ed}								δ_V	$_0 = \delta_V$	0-Factor	$\cdot V_{Ed}$						
Table C13: Displacements for UPAT rebar anchors Size M12 M16 M20 M24 Displacement-Factors for tensile load ¹ Uncracked or cracked concrete; Temperature range I, II $\delta_{NO-Factor}$ $[mm/(N/mm^2)]$ $0,09$ $0,10$ $0,11$ $0,12$ Displacement-Factors for shear load ² Uncracked or cracked concrete; Temperature range I, II $\delta_{NO-Factor}$ (mm/kN] $0,12$ $0,09$ $0,07$ $0,06$ $\delta_{VO-Factor}$ (mm/kN] $0,12$ $0,09$ $0,07$ $0,06$ $\delta_{VO-Factor}$ $(mm/kN]$ $0,12$ $0,09$ $0,07$ $0,06$ $\delta_{VO-Factor}$ $(mm/kN]$ $0,12$ $0,09$ $0,07$ $0,06$ $\delta_{VO-Factor} \cdot V_{Ed}$ $0,09$ $0,07$ $0,06$ $\delta_{VO-Factor} \cdot V_{Ed}$	$\delta_{N^{\infty}} = \delta_{N}$	∞ -Factor $\cdot \tau_{Ed}$																	
$\begin{array}{c c c c c c } \hline \text{M12} & \text{M16} & \text{M20} & \text{M24} \\ \hline \text{Displacement-Factors for tensile load}^{1)} \\ \hline \text{Jncracked or cracked concrete; Temperature range I, II} \\ \hline \text{Jnc-Factor} & [mm/(N/mm^2)] & 0,09 & 0,10 & 0,11 & 0,12 \\ \hline 0,09 & 0,15 & 0,16 & 0,18 \\ \hline \text{Displacement-Factors for shear load}^{2)} \\ \hline \text{Jncracked or cracked concrete; Temperature range I, II} \\ \hline \text{Displacement-Factors for shear load}^{2)} \\ \hline \text{Jncracked or cracked concrete; Temperature range I, II} \\ \hline \text{Displacement-Factors for shear load}^{2)} \\ \hline \text{Jncracked or cracked concrete; Temperature range I, II} \\ \hline \text{Displacement-Factors for shear load}^{2)} \\ \hline \text{Jncracked or cracked concrete; Temperature range I, II} \\ \hline \text{Displacement-Factor} & [mm/kN] & 0,12 & 0,09 & 0,07 & 0,06 \\ \hline \text{Displacement-Factor} & [nm/kN] & 0,14 & 0,11 & 0,09 \\ \hline \text{I}^{1)} \text{ Calculation of effective displacement:} \\ \hline \delta_{N0} = \delta_{N0-Factor} \cdot \tau_{Ed} & \delta_{V0} = \delta_{V0-Factor} \cdot V_{Ed} \\ \hline \end{array}$	(τ _{Ed} : De	sign value o	f the a	applie	ed ten	sile s	stress)		(V	′ _{Ed} : De	esign	value	of the	e app	lied s	hear	force)
$ \begin{array}{c c c c c c } \hline \textbf{Jncracked or cracked concrete; Temperature range I, II} \\ \hline \textbf{Jnc-Factor} & [mm/(N/mm^2)] & 0,09 & 0,10 & 0,11 & 0,12 \\ \hline \textbf{Jnc-Factor} & 0,13 & 0,15 & 0,16 & 0,18 \\ \hline \textbf{Displacement-Factors for shear load}^{2} \\ \hline \textbf{Jncracked or cracked concrete; Temperature range I, II} \\ \hline \textbf{Jncracked or cracked concrete; Temperature range I, II} \\ \hline \textbf{Jnc-Factor} & [mm/kN] & 0,12 & 0,09 & 0,07 & 0,06 \\ \hline \textbf{Jnc-Factor} & 0,18 & 0,14 & 0,11 & 0,09 \\ \hline \textbf{Jncracked or cracked concrete; Temperature range I, II} \\ \hline \textbf{Jncracked or cracked concrete; Temperature range I, II} \\ \hline \textbf{Jncracked or cracked concrete; Temperature range I, II} \\ \hline \textbf{Jncracked or cracked concrete; Temperature range I, II} \\ \hline \textbf{Jncracked or cracked concrete; Temperature range I, II} \\ \hline \textbf{Jncracked or cracked concrete; Temperature range I, II} \\ \hline \textbf{Jncracked or cracked concrete; Temperature range I, II} \\ \hline \textbf{Jncracked or cracked concrete; Temperature range I, II} \\ \hline \textbf{Jncracked or cracked concrete; Temperature range I, II} \\ \hline \textbf{Jnc-Factor} & [mm/kN] & 0,12 & 0,09 & 0,07 & 0,06 \\ \hline \textbf{Jnc-Factor} & \textbf{Imm/kN} & 0,14 & 0,11 & 0,09 \\ \hline \textbf{In Calculation of effective displacement:} \\ \hline \textbf{Jnc} & \textbf{Jnc-Factor} \cdot \textbf{T}_{Ed} & \textbf{Jnc-Factor} \cdot \textbf{V}_{Ed} \\ \hline \textbf{Jnc} & \textbf{Jnc} & \textbf{Jnc} \\ \hline \textbf{Jnc} & \textbf{Jnc} & \textbf{Jnc} & \textbf{Jnc} \\ \hline \textbf{Jnc} & \textbf{Jnc} & \textbf{Jnc} & \textbf{Jnc} \\ \hline \textbf{Jnc} & \textbf{Jnc} & \textbf{Jnc} & \textbf{Jnc} \\ \hline \textbf{Jnc} \\ $	Size				M	12			Ν	/116			М	20			М	24	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Displaceme	ent-Factors	for t	ensile	e load	d ¹⁾		-											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Uncracked	or cracked	cond	rete;	Tem	pera	ture	range	e I, II										
$\begin{array}{c c c c c c c } \hline \delta_{\text{No-Factor}} & \hline \mbox{Init} (V, (V, (M, M, M, M)) & 0, 13 & 0, 15 & 0, 16 & 0, 18 \\ \hline \mbox{Displacement-Factors for shear load}^{2)} \\ \hline \mbox{Uncracked or cracked concrete; Temperature range I, II} \\ \hline \mbox{$\delta_{\text{Vo-Factor}}$ & $ \mbox{[mm/kN]}$ & $ 0, 12 & 0, 09 & 0, 07 & 0, 06 \\ \hline \mbox{$\delta_{\text{Vo-Factor}}$ & $ \mbox{[mm/kN]}$ & $ 0, 12 & 0, 09 & 0, 07 & 0, 06 \\ \hline \mbox{$\delta_{\text{Vo-Factor}}$ & $ \mbox{[mm/kN]}$ & $ 0, 12 & 0, 14 & 0, 11 & 0, 09 \\ \hline \mbox{1^{1} Calculation of effective displacement:} & $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	$\delta_{\text{N0-Factor}}$	[mm/(N)/n	$am^2 \sqrt{1}$		0,	09			C	,10			0,	11			0,	12	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			IIII)]		0,	13			C	,15			0,	16			0,	18	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Displaceme	ent-Factors	for s	hear	load	2)													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Uncracked	or cracked	cond	rete;		-	ture	range											
¹⁾ Calculation of effective displacement: $\delta_{N0} = \delta_{N0-Factor} \cdot \tau_{Ed}$ ²⁾ Calculation of effective displacement: $\delta_{V0} = \delta_{V0-Factor} \cdot V_{Ed}$		[mm/k	N]							,									
$\delta_{N0} = \delta_{N0-Factor} \cdot \tau_{Ed} \qquad \qquad \delta_{V0} = \delta_{V0-Factor} \cdot V_{Ed}$			-						0									09	
	¹⁾ Calculat	ion of effect	ive di	splace	emen	t:				²⁾ Ca	alcula	tion of	effec	tive c	lispla	ceme	nt:		
	$\delta_{N\infty} = \delta_{N\infty\text{-Factor}} \cdot \tau_{Ed}$							、 、										f	
(τ_{Ed} : Design value of the applied tensile stress) (V _{Ed} : Design value of the applied shear force)		$(\tau_{Ed}$: Design value of the applied tensile stres										a a i a a	101.10	of the					

UPAT injection system UPM 55

Performances Displacements for reinforcing bars and UPAT rebar anchors

Table C	14: Characteris shear load											seism	ic
	action perfe												
Size					M10	M12	M14	M16	M20	M22	M24	M27	M30
	capacity under te												
UPAT an	chor rods and st	andard threa		rods							I		
ing C1	Steel zinc plated		5.8		29	43	58	79	123	152	177	230	281
eari V _{Rk,s}			8.8		47	68	92	126	196	243	282	368	449
ct.b	Stainless steel A4 and	Property class	50	[kN]	29	43	58	79	123	152	177	230	281
Charact.bearing capacity N _{Rk.s.C1}	High corrosion		70		41	59	81	110	172	212	247	322	393
ප ස	resistant steel C		80		47	68	92	126	196	243	282	368	449
UPAT an	chor rods and sta	andard threa		rods	, perfo		e categ	ory C2					
C2 J	Steel zinc plated		5.8			39		72	108		177		
earii I _{Rk,s,}	Pierod	-	8.8			61		116	173				
Charact.bearing capacity N _{Rk.s.c2}	Stainless steel	Property class	50	[kN]		39		72	108		177		
arac	A4 and High corrosion	01035	70			53		101	152		247		
ಚ ದ	resistant steel C		80			61		116	173		282		
Bearing	capacity under sl	hear load, st	eel fa	ailure	witho	ut leve	r arm ¹⁾						
UPAT an	chor rods, perfor	mance cate		C1									
ng	Steel zinc plated		5.8		15	21	29	39	61	76			141
eari / _{Rk,s,}		-	8.8		23	34	46	63	98	122			225
ity ∕	Stainless steel	Property class	50	[kN]	15	21	29	39	61	76	89	115	141
Charact.bearing capacity V _{Rk.s.C1}	A4 and High corrosion	0,000	70		20	30	40	55	86	107	124	161	197
ت 8	resistant steel C		80		23	34	46	63	98	122	141	184	225
Standard	threaded rods, p	performance		gory									
ng	Steel zinc plated		5.8		11	15	20	27	43	53			99
.bearing [,] V _{Rk,s,C1}	·		8.8		16	24	32	44	69				158
ity ∕	Stainless steel A4 and	Property class	50	[kN]	11	15	20	27	43	53	62	81	99
Charact.l capacity	High corrosion	Clace	70		14	21	28	39	60	75	87	113	138
5 S	resistant steel C		80		16	24	32	44	69	85	99	129	158
UPAT an	chor rods and st	andard threa		rods	, perfo	1							
ing ,c2	Steel zinc plated		5.8			14		27	43				
Charact.bearing capacity V _{Rk.s.C2}	Otoining start	Property	8.8 50			22 14		44 27	69 43				
act.t	Stainless steel A4 and	class	70	[kN]		20		39	60				
Char capa	High corrosion resistant steel C												
¹⁾ Partia	I safety factors for ductility is 1,0	performance	80 e cate	gory	 C1 or (22 C2 see	 Table (44 C16, for	69 UPAT		243 282 368 177 282 177 282 282 282 282 282 282 282 282 282 282 282 282 282 282 76 89 115 22 141 184 76 89 129 53 62 81 75 87 113 85 99 129 62 99 62 87 87 87 87		
Perform	njection system ances eristic steel bearing		UPA [.]	T anc	hor roc	ls and					Ann	ex C	11

Characteristic steel bearing capacity of UPAT anchor rods and standard threaded rods under seismic action (performance category C1 or C2)

able C1	apacity under ten ag bar B500B acc stic bearing capacity under shing bar B500B acc stic bearing capacity safety factors for 6: Partial safe reinforcing liameter of the bar apacity under ten Steel zinc plated	c. to DIN 4 city N_R near load, s c. to DIN 4 city V_R performance ety factor g bars (B ar	88-2:20 steel fa 88-2:20 tk.s.C1 ce cate rs of L 500B	009-0 [kN] ailure 009-0 [kN] gory	08, pe 44 98, pe 15 C1 se T an der se M10	63 out rfor 22 e Ta e Ta	85 Iever man 30 able	111 ce ca 39 C16 ods, s	140 1) tego 49 star	173 ry C 61	209 1 74	88	95 ded	102	119 s an	137 d	155
Characteria Bearing ca Reinforcir Characteria ¹⁾ Partial Gable C1 Size Iominal d Bearing ca	stic bearing capac apacity under sh ag bar B500B acc stic bearing capac safety factors for 6: Partial safe reinforcing liameter of the b apacity under ter Steel zinc plated	city N_R near load, s c. to DIN 4 city V_R performance ety factor g bars (B ar	Rk.s.C1 steel fa 88-2:20 Rk.s.C1 ce cate rs of L 500B	[kN] ailure 009-0 [kN] gory JPA) und	44 9 with 08, pe 15 C1 se T an der so	63 out rfor 22 e Ta e Ta	85 Ieve man 30 able or ro mic a	111 ce ca 39 C16 ods, s	140 1) tego 49 star	173 ry C 61	209 1 74	88	95 ded	102	119 s an	137 d	155
Bearing ca Reinforcin Characteria ¹⁾ Partial Gable C1 Size Iominal d Bearing ca	apacity under shing bar B500B accession bearing capacity factors for after the bar of th	ear load, s c. to DIN 4 city V_R performance ety factor g bars (B ar	steel fa 88-2:20 tk.s.C1 ce cate rs of L 500B)	JPA June	with 38, pe 15 C1 se T an der se M10	out rfor 22 e Ta e ta	iever man 30 able or ro mic a	ce ca 39 C16 ods, s	tego 49	ry C 61	r d t h	88	95 ded	102	119 s an	137 d	155
Reinforcir Characteria ¹⁾ Partial Gable C1 Gize Iominal d Bearing ca	ng bar B500B acc stic bearing capac safety factors for 6: Partial safe reinforcing liameter of the ba apacity under ter Steel zinc plated	c. to DIN 4 city V _R performance ety factor g bars (B ar	88-2:20 ce cate rs of L 500B)	009-0 [kN] gory JPA) und	08, pe 15 C1 se T an der se M10	erfor 22 e Ta chc eisr	rman 30 able or rc mic a	ce ca 39 C16 ods, s	tego 49	61	74	irea	ded	rod	s an	d	
Characteria ¹⁾ Partial Cable C1 Size Iominal d Bearing ca	stic bearing capac safety factors for 6: Partial safe reinforcing liameter of the b apacity under ten Steel zinc plated	city V _R performance ety factor g bars (B ar	rs of L 500B	[kN] gory JPA) und	T and der so	22 e Ta chc eisr	30 able or ro mic a	39 C16 ds, s actio	49 star	61	74	irea	ded	rod	s an	d	
¹⁾ Partial able C1 lize lominal d Bearing ca	safety factors for 6: Partial safe reinforcing liameter of the ba apacity under ter Steel zinc plated	ety factor bars (B ar	rs of L 500B)	gory JPA) une	C1 se T an der se M10	e Ta chc eisr	able or ro mic a	C16 ods, s	star	ndai	rd th	irea	ded	rod	s an	d	
lominal d Bearing ca	liameter of the b apacity under te Steel zinc plated	ar			M10				n pe	erfor	man	ice d	cate	gory	C1	or C	;2
lominal d Bearing ca	apacity under te Steel zinc plated		steel f	Φ		N	112										
Bearing ca	apacity under te Steel zinc plated		steel f	Φ				M14			M20			M24	M2		VI30
	Steel zinc plated	nslie load,	STEEL 1			12	14	16	18	20	22	24	25	26	28	30	32
ety factor	plated			allui	re''						1,50						
ety fact N			5.8 8.8								1,50						
≥ r	·	Property	50		2,86												
ي ت	Stainless steel A4 and High corrosion resistant steel C	class		[-]	1,50 ²⁾ / 1,87												
l safet			70	[-]						1,5	0 ²⁾ /1	1,87					
artia			80								1,60						
Ц Ц	Reinforcing bar	ł	B500B								1,40						
Bearing ca	apacity under sh	iear load, s	steel fa	ailure	¹⁾												
5	Steel zinc plated		5.8								1,25						
acto			8.8		1,25												
<u></u> >		Property class	50								2,38						
safe _{YMs,}	A4 and High corrosion resistant steel C	01000	70	[-]						1,2	5 ²⁾ / 1	l,56					
			80		1,33												
Ъа	Reinforcing bar	ł	B500B		1,50												
¹⁾ In abse ²⁾ Only ac	nce of other natio Imissible for steel	onal regulat C, with f _{yk}	ions / f _{uk} ≥ C),8 aı	nd A ₅ :	> 12	2 % (6	e.g. U	PAT	anc	hor ro	ods)					
UPAT in Performa	jection system	UPM 55											Γ	Anr			

Table C17: Characteristic values of resistance for UPAT anchor rods and standard
threaded rods in hammer drilled holes under seismic action performance
category C1

Size					M10	M12	M14	M16	M20	M22	M24	M27	M30
Characte	ristic	bond resista	nce, con	nbined p	ullout a	and cor	ncrete d	cone fa	ilure	-	-	-	
Hammer-	drilli	ng with stand	ard drill	bit or ho	llow dr	ill bit (c	Iry and	wet co	ncrete))			
Tem- perature -	I:	35 °C / 60 °C		[N/mm²]	7,0	7,0	6,7	6,0	5,7	6,7	6,7	6,7	6,7
range	II:	50 °C / 72 °C	τ _{Rk,C1}		7,0	7,0	6,7	5,7	5,7	6,7	6,7	6,7	6,7
Hammer-	drilli	ng with stand	ard drill	bit or ho	llow dr	ill bit (f	looded	hole)					
Tem-	I:	35 °C / 60 °C		[N/mm²]	7,5	7,5	6,5	5,7	5,7	5,7	5,7	5,7	5,7
perature - range	II:	50 °C / 72 °C	τ _{Rk,C1}		6,8	6,8	6,5	5,7	5,7	5,7	5,7	5,7	5,7
Installatio	on sa	afety factors											
Bearing o	apa	city under ten	sile load										
Dry and w	et co	oncrete					1,0				1	,2	
Flooded h	ole		$\gamma_2 = \gamma_{inst}$	[-]		1	,2				1,4		
Bearing o	apa	city under she	ar load										
All installa	ation	conditions	$\gamma_2 = \gamma_{inst}$	[-]					1,0				

Table C18: Characteristic values of resistance for reinforcing bars in hammer drilled holes under seismic action performance category C1

Nominal diameter of the b	ar	φ	10	12	14	16	18	20	22	24	25	26	28	30	32
Characteristic bond resist	ance, con	nbined p	ullou	t and	l con	crete	con	e fail	ure						
Hammer-drilling with stan	dard drill	bit or ho	llow	drill l	oit (d	ry an	d we	t con	crete	e)					
Tem- I: 35 °C / 60 °C		[NI/mm2]	7,0	7,0	6,7	5,7	5,7	5,7	6,7	6,7	6,7	6,7	6,7	6,7	4,8
range II: 50 °C / 72 °C	- τ _{Rk,C1}	[N/mm²]	7,0	7,0	6,7	5,7	5,7	5,7	6,7	6,7	6,7	6,7	6,7	6,7	4,8
Hammer-drilling with stan	dard drill	bit or ho	llow	drill l	bit (fl	oode	d ho	le)							
Tem- I: 35 °C / 60 °C		[N] /	7,5	6,5	6,5	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7	4,8
range II: 50 °C / 72 °C	- τ _{Rk,C1}	[N/mm²]	6,5	6,5	5,8	5,8	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7	4,8
Installation safety factors															
Bearing capacity under te	nsile load														
Dry and wet concrete					1	,0						1,2			
Flooded hole	$-\gamma_2 = \gamma_{\text{inst}}$	[-]	1,2						1,4						
Bearing capacity under sh	ear load														
All installation conditions	$\gamma_2 = \gamma_{inst}$	[-]	1,0												
											_				
UPAT injection system	UPM 55	5													

Performances

Characteristic values under seismic action (performance category C1) for UPAT anchor rods, standard threaded rods and reinforcing bars

Table C19: Characteristic values of resistance for UPAT anchor rods an	d standard
threaded rods in hammer drilled holes under seismic action p	erformance
category C2	

Size			M12	M16	M20	M24		
Characteristic bond resist	tance, con	nbined pu	Illout and conc	rete cone failur	9	•		
Hammer-drilling with stan	dard drill	bit or hol	low drill bit (dry	/ and wet concr	rete)			
Tem- I: 35 °C / 60 °C		[N] /ma ma 21	2,2	3,5	1,8	2,4		
perature — range II: 50 °C / 72 °C	τ _{Rk,C2}	[N/mm²]	2,2	3,5	1,8	2,4		
Hammer-drilling with stan	dard drill	bit or hol	low drill bit (flo	oded hole)				
Temper I: 35 °C / 60 °C		[N/mm²]	2,3	3,5	1,8	2,1		
ature range II: 50 °C / 72 °C	τ _{Rk,C2}		2,3	3,5	1,8	2,1		
Installation safety factors	-							
Bearing capacity under te	nsile load							
Dry and wet concrete					1,2			
Flooded hole	$\gamma_2 = \gamma_{inst}$	[-]	1	,2	1	,4		
Bearing capacity under sl	near load							
All installation conditions	$\gamma_2 = \gamma_{inst}$	[-]	1,0					
Displacement-Factors for	tensile loa	ad ¹⁾						
$\delta_{N,(DLS)}$ -Factor	Imm	'(N/mm²)]	0,09	0,10	0,11	0,12		
$\delta_{ m N,(ULS)-Factor}$	[11111	(14/11111)]	0,15	0,17	0,17	0,18		
Displacement-Factors for	shear loa	d ²⁾						
$\delta_{V,(DLS)}$ -Factor		ım/kN]	0,18	0,10	0,07	0,06		
$\delta_{V,(ULS)}$ -Factor	[11	III/KIN]	0,25	0,14	0,11	0,09		
¹⁾ Calculation of effective	displaceme	nt [.]	²⁾ Cal	culation of effect	ive displacement			

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N},(\text{DLS})} = \delta_{\text{N},(\text{DLS})\text{-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N},(\text{ULS})} = \delta_{\text{N},(\text{ULS})\text{-Factor}} \cdot \tau_{\text{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

²⁾ Calculation of effective displacement:

 $\delta_{V,(\mathsf{DLS})} = \delta_{V,(\mathsf{DLS})\text{-Factor}} \cdot V_{\mathsf{Ed}}$

 $\delta_{V,(ULS)} = \delta_{V,(ULS)\text{-Factor}} \cdot V_{Ed}$

(V_{Ed}: Design value of the applied shear force)

UPAT injection system UPM 55

Performances

Characteristic values under seismic action (performance category C2) for UPAT anchor rods and standard threaded rods