

DECLARATION OF PERFORMANCE

No. 0065 - EN

1. Unique identification code of the product-type: Injection anchor system UPM 44

2. Intended use/es:

Product	Intended use/es
Bonded anchor for use in concrete	Anchorages for which requirements for mechanical resistance and stability and safety in use shall be fulfilled. They are for fixing and/or supporting structural elements (which contribute to the stability of the works) or heavy units, see
	appendix, especially Annexes B 1 to B 8

3. Manufacturer: fischerwerke GmbH & Co. KG, Otto-Hahn-Straße 15, 79211 Denzlingen, Germany

4. Authorised representative: --

5. System/s of AVCP: 1

6a. Harmonised standard: ---

Notified body/ies: ---

6b. European Assessment Document: ETAG 001; 2013-04

European Technical Assessment: ETA-02/0022; 2015-08-19

Technical Assessment Body: DIBt

Notified body/ies: 1343 - MPA Darmstadt

7. Declared performance/s:

Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for design according to TR 029	See appendix, especially Annexes C 1 to C 6
Characteristic resistance for design according to CEN/TS 1992-4:2009	See appendix, especially Annexes C 7 to C 12
Displacements under tension an shear loads	See appendix, especially Annexes C 13, C 14

Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A 1
Resistance to fire	NPD

8. Appropriate Technical Documentation and/or Specific Technical Documentation: ---

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

1.V. A. Dun

Andreas Bucher, Dipl.-Ing.

Wolfgang Hengesbach, Dipl.-Ing., Dipl.-Wirtsch.-Ing.

i.V. W. Mylal

Tumlingen, 2015-08-26

- This DoP has been prepared in different languages. In case there is a dispute on the interpretation the english version shall always prevail.

- The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Specific Part

1 Technical description of the product

The injection anchor system UPM 44 is a bonded anchor consisting of a cartridge with injection mortar UPM 44, UPM 44 Express, UPM 44 Relax and a steel element. The steel element consist of

- a Upat threaded rod of sizes M6 to M30 or
- a Upat internal threaded anchor IST of sizes M8 to M20 or
- a reinforcing bar of sizes ϕ = 8 to 28 mm or
- a Upat rebar anchor of sizes M12 to M24

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

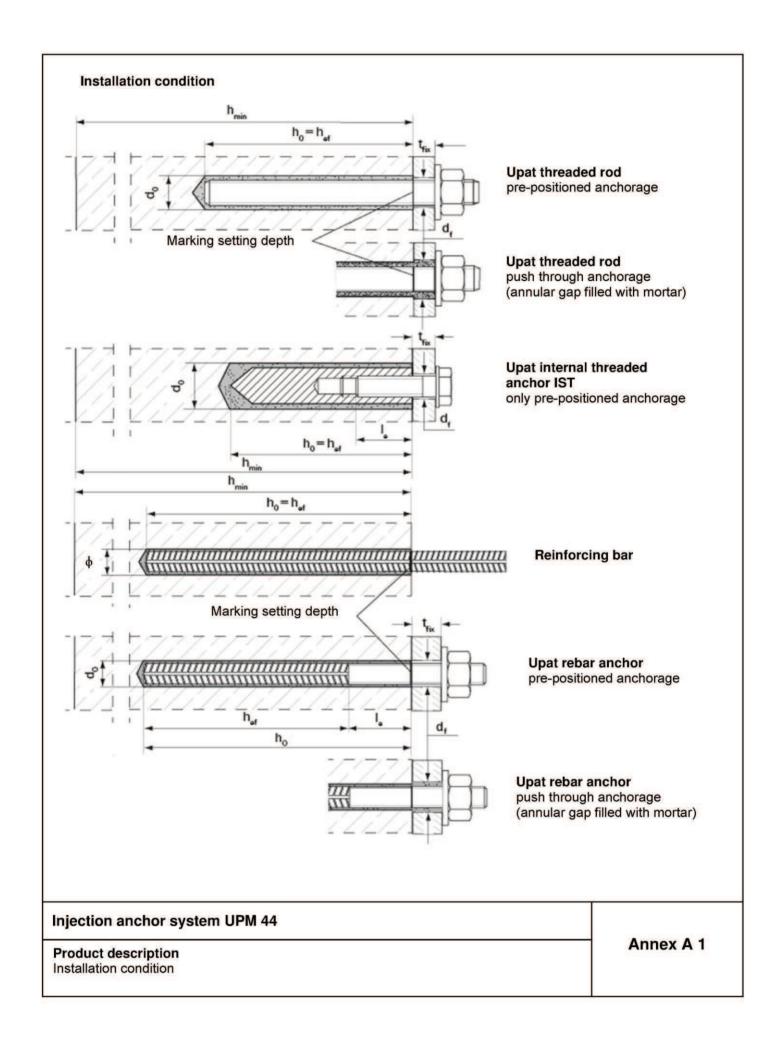
Essential characteristic	Performance
Characteristic resistance for design according to TR 029	See Annex C 1 to C 6
Characteristic resistance for design according to CEN/TS 1992-4:2009	See Annex C 7 to C 12
Displacements under tension and shear loads	See Annex C 13 / C 14

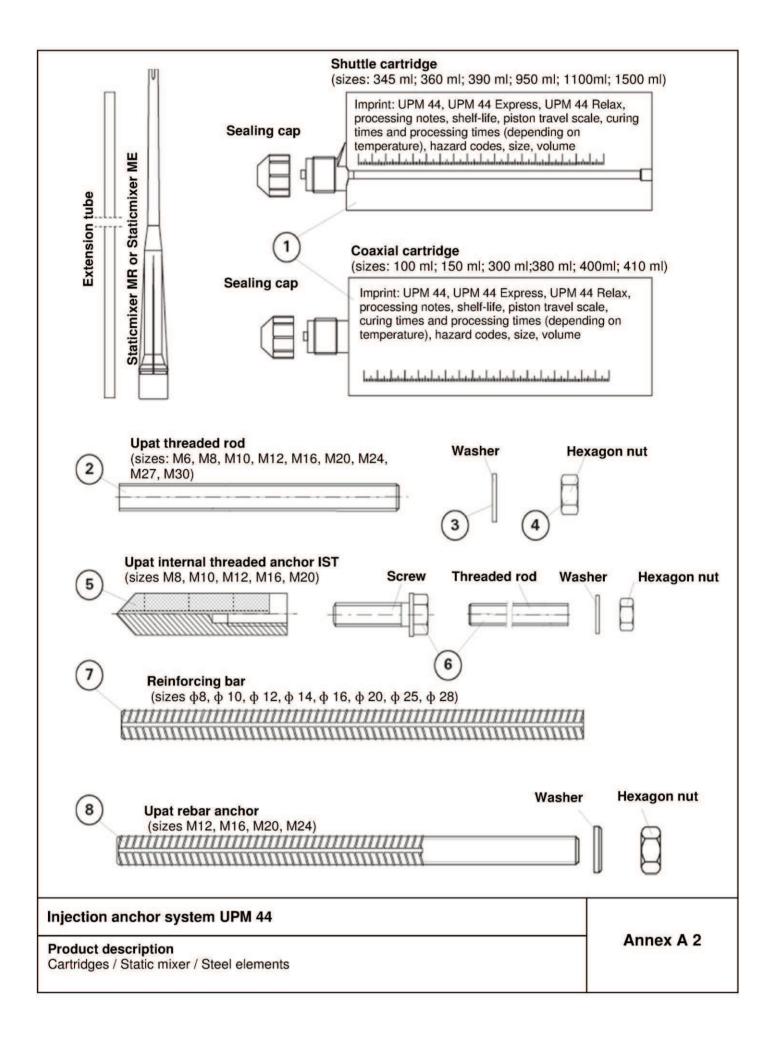
3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.


3.4 Safety in use (BWR 4)


The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Part	Designation		Material				
1	Mortar cartridge		Mortar, hardener; filler				
		Steel, zinc plated	Stainless steel A4	High corrosion- resistant steel C			
2	Threaded rod	Property class 5.8 or 8.8; EN ISO 898-1: 2013 zinc plated ≥ 5µm, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004 f _{uk} ≤ 1000 N/mm ² A ₅ > 8% fracture elongation	Property class 50, 70 or 80 EN ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062 EN 10088-1:2014 f _{uk} ≤ 1000 N/mm² A ₅ > 8% fracture elongation	Property class 50 or 80 EN ISO 3506:2009 or property class 70 with f_{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2014 $f_{uk} \le 1000$ N/mm ² $A_5 > 8\%$ fracture elongation			
3	Washer ISO 7089:2000	zinc plated ≥ 5µm, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014			
4	Hexagon nut	Property class 5 or 8; EN ISO 898-2:2013 zinc plated ≥ 5µm, ISO 4042:1999 A2K or hot-dip galvanised ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 50, 70 of 80 EN ISO 3506:2009 1.4565; 1.4529 EN 10088-1:2014			
5	Internal threaded anchor IST	Property class 5.8; EN 10277-1:2008-06 zinc plated ≥ 5µm, ISO 4042:1999 A2K	Property class 70 EN ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014			
6	Screw or threaded rod for internal threaded anchor	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated ≥ 5µm, ISO 4042:1999 A2K	Property class 70 EN ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014			
7	Reinforcing bar EN 1992-1-1:2004 and AC:2010, Annex C	Bars and de-coiled rods cla f_{yk} and k according to NDP $f_{uk} = f_{tk} = k \cdot f_{yk}$	ss B or C with or NCL of EN 1992-1-1/				
8	Upat rebar anchor	Rebar part: Bars and de-coiled rods class B or C with f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 $f_{uk} = f_{tk} = k \cdot f_{yk}$ EN 10088-1:2014					

Injection anchor system UPM 44	
Product description Materials	Annex A 3

Specifications of intended use

Table B1: Overview use categories and performance categories

	s subject to	UPM 44 with								
		Thr	eaded rod	Internal	threaded anchor IST	Reinfo	orcing bar	Upat rebar anchor		
		-			+					
Hammer dr	illing				all sizes					
Static and quasi static	un- cracked concrete	M6 to M30	Tables: C1, C5 ,C9, C13, C17,	M8 to M20	Tables: C2, C6, C10, C14, C19, C20	Ø8 to Ø28	Tables: C3, C7, C11, C15,	M12 to	Tables: C4, C8,	
load, in	cracked concrete	M10 to M30	^{10 to} C18				C21, C22	M24-	C12, C16, C23, C24	
Use	Dry or wet concrete	IVIS TO IVISU		M8 to M20		Ø8	to Ø28	M12 to M24		
category	Flooded hole ¹⁾			N	//8 to M20					
Installation	temperature		-10°C to +40°C							
In-service	Temperature range l	-4	.0°C to +80°C	(max. long term temperature +50°C and max. short term temperature +80°C)					ort term	
tempe- rature	Temperature range II	-40	0°C to +120°C	(max. long term temperature +72°C and max. short term temperature +120°C)					nort term	

¹⁾ Only coaxial cartridges: 380 ml, 400 ml and 410 ml

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013
- Strength classes C20/25 to C50/60 according to EN 206:2013

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions exist (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other
 particular aggressive conditions exist (high corrosion resistant steel)
 Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of
 seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in
 desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Anchorages have to be designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages under static or quasi-static actions are designed in accordance with TR 029 "Design of bonded anchors", Edition September 2010 or CEN/TS 1992-4:2009

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Overhead installation allowed

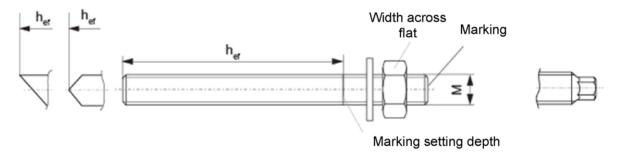

Injection anchor system UPM 44	_
Intended Use Specifications	Annex B 1

Table B2: Installation parameters threaded rods

Size				М6	M8	M10	M12	M16	M20	M24	M27	M30
Width across flat SW [mm			[mm]	10	13	17	19 ⁾	24	30	36	41	46
Nominal drill b	it diameter	d _o	[mm]	8	10	12	14	18	24	28	30	35
Drill hole deptl	า	h_0	[mm]									
Effective anch	orage denth	$h_{\rm ef,min}$	[mm]	50	60	60	70	80	90	96	108	120
Ellective afferi	orage depth	h _{ef,max}	[mm]	72	160	200	240	320	400	480	540	600
Maximum torq	ue moment	$T_{inst,max}$	[Nm]	5	10	20	40	60	120	150	200	300
Minimum space	Minimum spacing s _{min}		[mm]	40	40	45	55	65	85	105	125	140
Minimum edge	e distance	C _{min}	[mm]	40	40	45	55	65	85	105	125	140
Diameter of clearance hole in the	Pre- positioned anchorage	d _f	[mm]	7	9	12	14	18	22	26	30	33
fixture 1)	Push through anchorage	d_f	[mm]	9	11	14	16	20	26	30	32	40
Minimum thickness of concrete member		h _{ef} + 30 (≥ 100)				h _{ef} + 2d ₀						

¹⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1

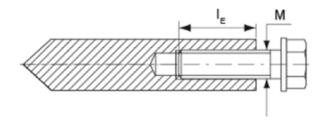
Upat threaded rods

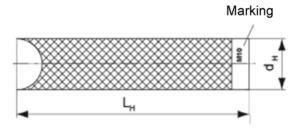
Marking:

Property class 8.8 or high corrosion-resistant steel C, property class 80: ● Stainless steel A4, property class 50 or high corrosion-resistant steel C, property class 50:●●

Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:

- Materials, dimensions and mechanical properties according Annex A 3, Table A1
- Inspection certificate 3.1 according to EN 10204:2004, the documents should be stored
- Marking of embedment depth


Injection anchor system UPM 44	
Intended Use Installation parameters threaded rods	Annex B 2


Table B3: Installation parameters Upat internal threaded anchors IST

Size			М8	M10	M12	M16	M20
Diameter of anchor	d _H	[mm]	12	16	18	22	28
Nominal drill bit diameter	d_{o}	[mm]	14	18	20	24	32
Drill hole depth	h_o	[mm]			$h_0 = h_{ef}$		
Effective anchorage depth (h _{ef} = L _H)	h_{ef}	[mm]	90	90	125	160	200
Maximum torque moment	$T_{inst,max}$	[Nm]	10	20	40	80	120
Minimum spacing	s_{min}	[mm]	55	65	75	95	125
Minimum edge distance	C _{min}	[mm]	55	65	75	95	125
Diameter of clearance hole in the fixture ¹⁾	d_f	[mm]	9	12	14	18	22
Minimum thickness of concrete member	h_{min}	[mm]	120	125	165	210	265
Maximum screw-in depth	$I_{E,max}$	[mm]	18	23	26	35	45
Minimum screw-in depth	$I_{E,min}$	[mm]	8	10	12	16	20

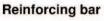
¹⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1

Upat internal threaded anchor IST

Marking: anchor size e.g.: M10

Stainless steel in addition A4 e.g.: M10 A4 High corrosion-resistant steel in addition C

e.g.: M10 C


Fastening screw or threaded rods including washer and nuts must comply with the appropriate material and strength class of table A1

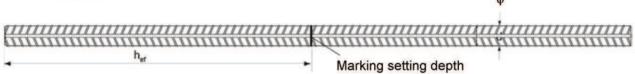

Injection anchor system UPM 44	
Intended Use Installation parameters Upat internal threaded anchors IST	Annex B 3

Table B4: Installation parameters reinforcing bars

Rebar diameter		ф	8 ¹⁾	10 ¹⁾	12 ¹⁾	14	16	20	25	28
Nominal drill bit diameter	do	[mm]	(10)12	(12)14	(14) 16	18	20	25	30	35
Drill hole depth	h_0 [mm] $h_0 = h_{ef}$									
Effective anchorage	h _{ef,min}	[mm]	60	60	70	75	80	90	100	112
depth	h _{ef,max}	[mm]	160	200	240	280	320	400	500	560
Minimum spacing	Smin	[mm]	40	45	55	60	65	85	110	130
Minimum edge distance	C _{min}	[mm]	40	45	55	60	65	85	110	130
Minimum thickness of concrete member	h _{min}	[mm]	h _{ef} +	- 30 ≥ 10	0	h _{ef} + 2d ₀				

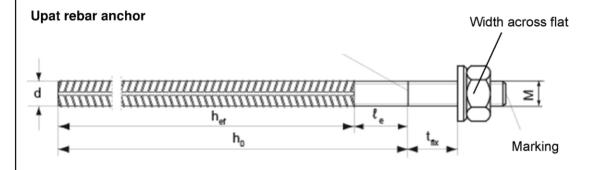
¹⁾ Both drill bit diameters can be used.

Rib height h:

- Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2009+AC:2010
- The rib height h must be 0,05 φ ≤ h ≤ 0,07 φ
 (φ = nominal bar size, h = Rip height of the bar)

lı	nje	ction	ancho	system	UPM 44
----	-----	-------	-------	--------	--------

Intended Use


Installation parameters reinforcing bars

Annex B 4

Table B5: Installation parameters Upat rebar anchor

Threaded diameter				M12	1)	M16	M20	M24
Diameter of anchor		d	[mm]	12		16	20	25
Width across flat		SW	[mm]	19		24	30	36
Nominal drill bit diame	eter	do	[mm]	(14)	16	20	25	30
Drill hole depth		ho	[mm]			h _{ef} +	$\ell_{ m e}$	
Distance concrete surface to welded join [mm]						100)	
Effective and because death		h _{ef,min}	[mm]	70		80	90	96
Effective anchorage of	ерит	h _{ef,max}	[mm]	140)	220	300	380
Maximum torque mor	nent	$T_{inst,max}$	[Nm]	40		60	120	150
Minimum spacing		S _{min}	[mm]	55		65	85	105
Minimum edge distan	ce	C _{min}	[mm]	55		65	85	105
Diameter of	Pre-positioned anchorage	d _f	[mm]	14		18	22	26
clearance hole in the fixture ²⁾	Push through anchorage	d _f	[mm]	18		22	26	32
Minimum thickness of member	concrete	h _{min}	[mm]	h _o + 30	$h_0 + 30$ $h_0 + 2d_0$			

¹⁾ Both drill bit diameters can be used

Marking: Upat rebar anchor; FRA (for stainless steel)

Upat rebar anchor FRA C (for high corrosion-resistant steel)

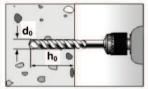
Injection anchor system UPM 44	
Intended Use Installation parameters Upat rebar anchor	Annex B 5

²⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1

Table B6: Parameters of steel brush Upat BS Ø

Drill bit diameter	[mm]	8	10	12	14	16	18	20	24	25	28	30	35
Steel brush diameter d _b	[mm]	9	11	14	16	20	20	25	26	27	30	40	40

Table B7: Maximum processing time of the mortar and minimum curing time (During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature).

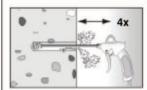

- 240	Temperature at		um curing tim [minutes]	e ¹⁾ t _{cure}	System	Maximum processing time twork [minutes]				
		base	UPM 44 Express	UPM 44	UPM 44 Relax	temperature (mortar) [°C]	UPM 44 Express	UPM 44	UPM 44 Relax	
-10	to	-5	12 hours							
>-5	to	±0	3 hours	24 hours		±0	5			
>±0	to	+5	3 hours	3 hours	6 hours	+5	5	13		
>+5	to	+10	50	90	3 hours	+10	3	9	20	
>+10	to	+20	30	60	2 hours	+20	1	5	10	
>+20	to	+30		45	60	+30		4	6	
>+30	to	+40		35	30	+40		2	4	

¹⁾ For wet concrete or flooded hole the curing time must be doubled.

Injection anchor system UPM 44	
Intended Use	Annex B 6
Cleaning tools / Processing - and curing times	

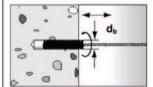
Installation instructions part 1 Drilling and cleaning the hole

1


Drill the hole.

Drill hole diameter d₀ and drill hole depth h₀ see Tables **B2**, **B3**, **B4**, **B5**.

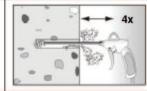
2



 $h_{ef} \le 12d$ and $d_0 < 18$ mm: Blow out the drill hole four times by hand.

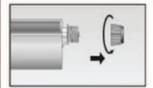
 $h_{ef} > 12d$ and/or $d_0 \ge 18$ mm: Blow out the drill hole four times, using oil-free compressed air (p > 6 bar).

3

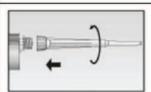


Brush the drill hole four times using an adequate steel brush (see Table **B6**).

4


 $h_{ef} \le 12d$ and $d_0 < 18$ mm: Blow out the drill hole four times by hand.

h_{ef} > 12d and/or d₀ ≥ 18 mm: Blow out the drill hole four times, using oil-free compressed air (p > 6 bar).


Preparing the cartridge

5

Twist off the sealing cap.

6

Twist on the static mixer (the spiral in the static mixer must be clearly visible).

7

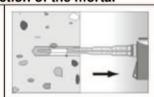
Place the cartridge into the dispenser.

8

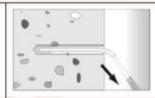
Press out approximately 10 cm of mortar until the resin is permanently grey in

Mortar which is not grey in colour will not cure and must be disposed of.

Injection anchor system UPM 44

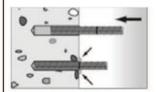

Intended Use

Installation instructions part 1


Annex B 7

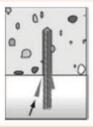
Installation instructions part 2 Injection of the mortar

9

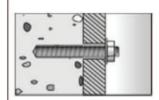

Fill approximately 2/3 of the drill hole with mortar. Always begin from the bottom of the hole to eliminate voids.



For drill hole depth ≥ 150 mm use an extension tube.

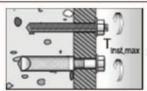

Installation Upat anchor rods or internal threaded anchors IST

10



Only use clean and oil-free anchor elements. Press the anchor rod or Upat internal threaded anchor down to the bottom of the hole, turning it slightly while doing so. After inserting the anchor element, excess mortar must emerge around the anchor element.

For overhead installation support the anchor element with wedges.


For push through installation fill the annular gap also with mortar.

11

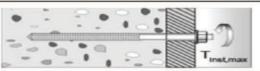
Wait for the specified curing time t_{cure} see Table **B7**.

12

Mounting the fixture T_{inst,max} see Tables **B2** or **B3**

Installing reinforcing bars and Upat rebar anchors

10


Only use clean and oil-free rebars. Mark the reinforcing bar for setting depth. Using a turning movement, push the reinforcing bar or Upat rebar anchor vigorously into the filled hole up to the insertion depth marking. When reaching the setting depth marking surplus mortar must emerge around the anchor.

11

Wait for the specified curing time t_{cure} see Table **B7**.

12

Mounting the fixture T_{inst,max} see Table **B5**

Injection anchor system UPM 44

Intended Use

Installation instructions part 2

Annex B 8

Table C1: Characteristic values of resistance for threaded rods under tension loads in un-cracked and cracked concrete (Design according to TR 029)

Size				М6	M8	M10	M12	M16	M20	M24	M27	M30
Installation	Dry and wet concrete		[-]		1,0							
safety factor	looded hole	γ2	[-]				1,2 ¹⁾					
Combined pullor	ut and conc	rete co	ne failure									
Diameter of calcu	lation	d	[mm]	6	8	10	12	16	20	24	27	30
Characteristic bond resistance in un-cracked concrete C20/25. Dry and wet concrete												
Temperature rang	ge I ²⁾	$\tau_{Rk,ucr}$	[N/mm ²]	9,0	11,0	11,0	11,0	10,0	9,5	9,0	8,5	8,5
Temperature rang	ge II ²⁾	$\tau_{Rk,ucr}$	[N/mm ²]	6,5	9,5	9,5	9,0	8,5	8,0	7,5	7,0	7,0
Characteristic bond resistance in un-cracked concrete C20/25. Flooded hole 1)												
Temperature rang		$\tau_{Rk,ucr}$	[N/mm ²]	-			9,5	8,5	8,0	7,5	7,0	7,0
Temperature rang	ge II ²⁾	$\tau_{Rk,ucr}$	[N/mm ²]				7,5	7,0	6,5	6,0	6,0	6,0
Characteristic bo		ice in c	racked co	oncrete	C20/25	. Dry ar	nd wet	concret	е			
Temperature rang		$\tau_{Rk,cr}$	[N/mm ²]			6,0	6,0	6,0	5,5	4,5	4,0	4,0
Temperature rang		$\tau_{Rk,cr}$	[N/mm ²]			5,0	5,0	5,0	5,0	4,0	3,5	3,5
Characteristic bo	ond resistar	ice in c	racked co	oncrete	C20/25	. Flood	ed hole	1)				
Temperature rang		$\tau_{Rk,cr}$	[N/mm ²]				5,0	5,0	4,5	4,0	3,5	3,5
Temperature rang	ge II ²⁾	$\tau_{Rk,cr}$	[N/mm ²]	-			4,0	4,0	3,5	3,5	3,0	3,0
		25/30	[-]					1,05				
		30/37	[-]					1,10				
Increasing factor	w	235/45	[-]					1,15				
increasing factor	Ψ _c (240/50	[-]					1,19				
		245/55	[-]					1,22				
		C50/60	[-]					1,26				
Splitting failure												
	h/l	n _{ef} ≥2,0	[mm]					1,0 h _{ef}				
Edge distance c _{cr,}	,sp 2,0>h/l	า _{ef} >1,3	[mm]				4,6	6 h _{ef} – 1,	8 h			
	h/l	n _{ef} ≤1,3	[mm]					2,26 h _{ef}				
Spacing		S _{cr,sp}	[mm]					2 c _{cr,sp}				

 $^{^{1)}}$ Only coaxial cartridges: 380 ml, 400 ml and 410 ml $^{2)}$ See Annex B1

Injection anchor system UPM 44	
Performances	Annex C 1
Characteristic values of resistance for threaded rods under tension loads in	
un-cracked and cracked concrete (Design according to TR 029)	

Table C2: Characteristic values of resistance for Upat internal threaded anchors IST under tension loads in un-cracked concrete (Design according to TR 029)

Size				M8	M10	M12	M16	M20
Installation safety	Dry and wet concrete		[-]			1,0		
factor	Flooded hole	γ2	[-]			1,2 ¹⁾		
Steel failure								
	Property	5.8	[kN]	19	29	43	79	123
Characteristic resistance	class	8.8	[kN]	29	47	68	108	179
with screw N _{Rk,s}	Property	A4	[kN]	26	41	59	110	172
	class 70	С	[kN]	26	41	59	110	172
Combined pullout and co	oncrete cone f	ailure						
Diameter of calculation	[mm]	12	16	18	22	28		
Characteristic bond resis	stance in un-c		ncrete C2	20/25. D	ry and w	et conc	rete	
Temperature range I ²⁾		$N_{Rk,p}^0$	[kN]	30	40	50	75	115
Temperature range II ²⁾	$N^0_{Rk,p}$	[kN]	25	30	40	60	95	
Characteristic bond resis	stance in un-c		ncrete C2	20/25. F	looded h	nole		
Temperature range I ²⁾		$N^0_{Rk,p}$	[kN]	25	35	50	60	95
Temperature range II ²⁾		$N^0_{Rk,p}$	[kN]	20	25	35	50	75
		C25/30	[-]			1,05		
		C30/37	[-]			1,10		
Increasing factor III		C35/45	[-]			1,15		
Increasing factor Ψ_c		C40/50	[-]			1,19		
		C45/55	[-]			1,22		
		C50/60	[-]			1,26		
Splitting failure								
		h/h _{ef} ≥2,0	[mm]			1,0 h _{ef}		
Edge distance c _{cr,sp}	2,0>	h/h _{ef} >1,3	[mm]		4,6	6 h _{ef} – 1,8	3 h	
		h/h _{ef} ≤1,3	[mm]	2,26 h _{ef}				
Spacing		$s_{\text{cr,sp}}$	[mm]	2 c _{cr,sp}				

 $^{^{1)}}$ Only coaxial cartridges: 380 ml, 400 ml and 410 ml $^{2)}\,\mathrm{See}$ Annex B1

Injection anchor system UPM 44	
Performances	Annex C 2
Characteristic values of resistance for Upat internal threaded anchors under	
tension loads in un-cracked concrete (Design according to TR 029)	

Table C3: Characteristic values of resistance for reinforcing bars under tension loads in un-cracked and cracked concrete (Design according to TR 029)

Size	ф	[mm]	8	10	12	14	16	20	25	28
Installation safety factor		[-]				1	,0			
Combined pullout an	d concrete con	e failure								
Diameter of calculation	n d	[mm]	8	10	12	14	16	20	25	28
Characteristic bond	resistance in ur	n-cracked	concre	te C20/2	25. Dry a	nd wet	concrete	9		
Temperature range I ¹⁾	$ au_{Rk,ucr}$	[N/mm ²]	11,0	11,0	11,0	10,0	10,0	9,5	9,0	8,5
Temperature range II ¹	$ au_{Rk,ucr}$	[N/mm ²]	9,5	9,5	9,0	8,5	8,5	8,0	7,5	7,0
Characteristic bond resistance in cracked concrete C20/25. Dry and wet concrete										
Temperature range I ¹⁾	$ au_{Rk,cr}$	[N/mm ²]		3,0	5,0	5,0	5,0	4,5	4,0	4,0
Temperature range II ¹	$ au_{Rk,cr}$	[N/mm ²]		3,0	4,5	4,5	4,5	4,0	3,5	3,5
	C25/30	[-]				1,	05			
	C30/37	[-]				1,	10			
Increasing factor Ψ _c	C35/45	[-]				1,	15			
Increasing factor Ψ_c	C40/50	[-]				1,	19			
	C45/55	[-]				1,	22			
	C50/60	[-]				1,	26			
Splitting failure										
_	h/h _{ef} ≥2,0	[mm]	1,0 h _{ef}							
Edge distance c _{cr,sp}	2,0>h/h _{ef} >1,3	[mm]	n] 4,6 h _{ef} – 1,8 h							
	h/h _{ef} ≤1,3	[mm]				2,26	3 h _{ef}			
Spacing	S _{cr,sp}	[mm]	2 C _{cr,sp}							

¹⁾ See Annex B1

Injection anchor system UPM 44	
Performances	Annex C 3
Characteristic values of resistance for reinforcing bars in un-cracked and cracked	
concrete under tension loads (Design according to TR 029)	

Table C4: Characteristic values of resistance for Upat rebar anchors under tension loads in un-cracked and cracked concrete (Design according to TR 029)

Size			M12	M16	M20	M24			
Installation safety factor	γ2	[-]	1,0						
Steel failure									
Characteristic resistance	$N_{Rk,s}$	[kN]	63	111	173	270			
Partial safety factor	γ _{Ms,N} 1)	[-]		1	,4				
Combined pullout and o	oncrete cone f	ailure							
Diameter of calculation	d	[mm]	12	16	20	25			
Characteristic bond res	istance in un-c	racked co	ncrete C20/25	. Dry and wet	concrete				
Temperature range I 2)	$ au_{Rk,ucr}$	[N/mm ²]	11,0	10,0	9,5	9,0			
Temperature range II 2)	$ au_{Rk,ucr}$	[N/mm ²]	9,0	8,5	8,0	7,5			
Characteristic bond res	istance in crac	ked conci	rete C20/25. Di	y and wet cor	ncrete				
Temperature range I 2)	$ au_{Rk,cr}$	[N/mm ²]	5,0	5,0	4,5	4,0			
Temperature range II 2)	$ au_{Rk,cr}$	[N/mm ²]	4,5	4,5	4,0	3,5			
	C25/30	[-]	1,05						
	C30/37	[-]	1,10						
Increasing factor III	C35/45	[-]		1,	,15				
Increasing factor Ψ _c	C40/50	[-]		1,	,19				
	C45/55	[-]		1,	,22				
	C50/60	[-]		1,	,26				
Splitting failure									
	h/h _{ef} ≥2,0	[mm]		1,0) h _{ef}				
Edge distance c _{cr,sp}	2,0>h/h _{ef} >1,3	[mm]	4,6 h _{ef} – 1,8 h						
	h/h _{ef} ≤1,3	[mm]		2,2	6 h _{ef}				
Spacing	S _{cr,sp}	[mm]		2 (C _{cr,sp}				

¹⁾ In absence of other national regulations

Injection anchor system UPM 44	
Performances Characteristic values of resistance for Upat rebar anchors in un-cracked and cracked	Annex C 4
concrete under tension loads (Design according to TR 029)	

²⁾ See Annex B1

Table C5: Characteristic values of resistance for threaded rods under shear loads (Design according to TR 029)

Size			М6	М8	M10	M12	M16	M20	M24	M27	M30
Concrete pryout failure											
Factor k in equation (5.7) of TR 029 for the design of bonded anchors	k	[-]					2,0				

Table C6: Characteristic values of resistance for Upat internal threaded anchors IST under shear loads (Design according to TR 029)

Size				M8	M10	M12	M16	M20			
Installation safety factor		γ2	[-]	1,0							
Steel failure without leve	r arm										
	Property	5.8	[kN]	9,2	14,5	21,1	39,2	62,0			
Characteristic	class	8.8	[kN]	14,6	23,2	33,7	62,7	90,0			
resistance V _{Rk,s}	Property class 70	A4	[kN]	12,8	20,3	29,5	54,8	86,0			
		С	[kN]	12,8	20,3	29,5	54,8	86,0			
Steel failure with lever ar	m										
	Property	5.8	[Nm]	20	39	68	173	337			
Characteristic	class	8.8	[Nm]	30	60	105	266	519			
resistance M ⁰ _{Rk,s}	Property	A4	[Nm]	26	52	92	232	454			
	class 70	С	[Nm]	26	52	92	232	454			
Concrete pryout failure											
Factor k in equation (5.7) of TR 029 for the design of bonded anchors				2,0							

Injection anchor system UPM 44	
Performances Characteristic values of resistance for threaded rods and Upat internal threaded anchors IST under shear loads (Design according to TR 029)	Annex C 5

Table C7: Characteristic values of resistance for reinforcing bars under shear loads (Design according to TR 029)

Size	ф	[mm]	8	10	12	14	16	20	25	28
Concrete pryout failure										
Factor k in equation (5.7) of Technical Report TR 029, Section	k	[-]				2,	0			
5.2.3.3										

Table C8: Characteristic values of resistance for Upat rebar anchors under shear loads (Design according to TR 029)

Size			M12	M16	M20	M24					
Steel failure without lever arm											
Characteristic resistance	$V_{Rk,s}$	[kN]	30	55	86	124					
Partial safety factor	γ _{Ms,} ∨ 1)	[-]	1,56								
Steel failure with lever arm											
Characteristic resistance	$M^0_{Rk,s}$	[Nm]	92	233	454	785					
Partial safety factor $\gamma_{Ms,V}^{(1)}$ [-] 1,56											
Concrete pryout failure											
Factor k in equation (5.7) of TR 029 for the design of bonded anchors	k	[-]	2,0								

¹⁾ In absence of other national regulations

Injection anchor system UPM 44	
Performances	Annex C 6
Characteristic values of resistance for reinforcing bars and Upat rebar anchors under shear loads (Design according to TR 029)	

Table C9: Characteristic values of resistance for threaded rods under tension loads in un-cracked and cracked concrete (Design according to CEN/TS 1992-4)

Size					М6	М8	M10	M12	M16	M20	M24	M27	M30
Installation safety factor γ _{inst}			crete	[-]					1,0				
·	F	Flooded	hole	[-]						1,:	2 ¹⁾		
Steel failure													
Characteristic resis			$N_{Rk,s}$	[kN]									
Combined pullout and concrete cone failure													
Diameter of calcula			d	[mm]	6	8	10	12	16	20	24	27	30
Characteristic bond resistance in un-cracked concrete C20/25. Dry and wet concrete													
Temperature range				[N/mm ²]	9,0	11,0	11,0	11,0	10,0	9,5	9,0	8,5	8,5
Temperature range				[N/mm ²]	6,5	9,5	9,5	9,0	8,5	8,0	7,5	7,0	7,0
Characteristic bo					d cond	rete C2	20/25. F	looded	hole 1)				
Temperature range				[N/mm ²]				9,5	8,5	8,0	7,5	7,0	7,0
Temperature range	e II ²⁾		$ au_{Rk,ucr}$	[N/mm ²]				7,5	7,0	6,5	6,0	6,0	6,0
Characteristic bo		sistan	ce in c	racked c	oncret	e C20/2	5. Dry a	and wet	concre	ete			
Temperature range	e l ²⁾		$ au_{Rk,cr}$	[N/mm ²]			6,0	6,0	6,0	5,5	4,5	4,0	4,0
Temperature range	e II ²⁾		$\tau_{Rk,cr}$	[N/mm ²]			5,0	5,0	5,0	5,0	4,0	3,5	3,5
Characteristic bo	nd re	sistan	ce in c	racked c	oncret	e C20/2	5. Floo	ded ho	le 1)				
Temperature range	Temperature range I^{2} $ au_{Rk,cr}$ [N/mm ²]							5,0	5,0	4,5	4,0	3,5	3,5
Temperature range	Temperature range II^{2} $\tau_{Rk,cr}$ [N/mm ²]							4,0	4,0	4,0	3,5	3,0	3,0
		C	25/30	[-]	1,05								
		С	30/37	[-]					1,10				
la cue e circa fo etca II		С	35/45	[-]					1,15				
Increasing factor 4	c	C	40/50	[-]	1,19								
		C.	45/55	[-]					1,22				
		С	50/60	[-]					1,26				
Factor acc.	k ₈		acked	[-]					7,2				
CEN/TS 1992-	K8		ncrete	[-]					7,2				
4:2009 Section 6.2.2.3	k ₈		acked ncrete	[-]					10,1				
Concrete cone fai	ilure	- 601	CIELE										
Factor acc.		cra	acked	[_1					7 2				
CEN/TS 1992-	k _{cr}	001	ncrete	[-]	7,2								
4:2009 Section 6.2.3.1	k _{ucr}		acked ncrete	[-]	10,1								
		h/h,	_{ef} ≥2,0	[mm]					1,0 h _{ef}				
Edge distance c _{cr,s}	p 2	2,0>h/h	_{ef} >1,3	[mm]				4,6	h _{ef} – 1,	8 h			
		h/h,	_{ef} ≤1,3	[mm]					2,26 h _{ef}	f			
Spacing			S _{cr,sp}	[mm]					2 c _{cr,sp}				

 $^{^{1)}}$ Only coaxial cartridges: 380 ml, 400 ml and 410 ml $^{2)}$ See Annex B1

Injection anchor system UPM 44	
Performances Characteristic values of resistance for threaded rods under tension loads in un-cracked and cracked concrete (Design according to CEN/TS-1992-4)	Annex C 7

Table C10: Characteristic values of resistance for Upat internal threaded anchors IST under tension loads in un-cracked concrete (Design according to CEN/TS 1992-4)

Size				М8	M10	M12	M16	M20
Installation safety factor	Dry and	[-]	1,0					
Yinst		Flooded hole	[-]			1,2 ¹⁾		
Steel failure		ı				,		
	Property	5.8	[kN]	19	29	43	79	123
Characteristic resistance	class	8.8	[kN]	29	47	68	108	179
with screw N _{Rk,s}	Property	A4	[kN]	26	41	59	110	172
	class 70	С	[kN]	26	41	59	110	172
	Property	5.8	[-]			1,50	•	
Partial	class		[-]			1,50		
safety factor	Property	A4	[-]			1,87		
γMs,N	class 70	С	[-]			1,87		
Combined pullout and co	ncrete cor	ne failure						
Diameter of calculation	d	[mm]	12	16	18	22	28	
Characteristic bond resis	tance in u	n-cracked co	ncrete C2	20/25. D	ry and w	et conc	rete	
Temperature range I ²⁾		$N^0_{Rk,p}$	[kN]	30	40	50	75	115
Temperature range II ²⁾		$N^0_{Rk,p}$	[kN]	25	30	40	60	95
Characteristic bond resis	tance in u	n-cracked co	ncrete C2	20/25. F	looded h	iole 1)		
Temperature range I ²⁾		$N^0_{Rk,p}$	[kN]	25	35	50	60	95
Temperature range II ²⁾		N ⁰ _{Rk,p}	[kN]	20	25	35	50	75
		C25/30	[-]			1,05		
		C30/37	[-]			1,10		
Increasing factor Ψ _c		C35/45	[-]			1,15		
moreasing ractor 1's		C40/50	[-]			1,19		
		C45/55	[-]			1,22		
		C50/60	[-]			1,26		
Factor acc. CEN/TS 1992-4 Section 6.2.2.3	4-5:2009	k ₈	[-]			10,1		
Concrete cone failure								
Factor acc. CEN/TS 1992-4 Section 6.2.3.1	4-5:2009	k _{ucr}	[-]			10,1		
		h/h _{ef} ≥2,0	[mm]			1,0 h _{ef}		
Edge distance c _{cr,sp}	2	,0>h/h _{ef} >1,3	[mm]		4,6	3 h _{ef} – 1,8	3 h	
		h/h _{ef} ≤1,3	[mm]			2,26 h _{ef}		
Spacing		S _{cr,sp}	[mm]			2 c _{cr,sp}		

 $^{^{1)}}$ Only coaxial cartridges: 380 ml, 400 ml and 410 ml $^{2)}\,\mathrm{See}$ Annex B1

Injection anchor system UPM 44	
Performances	Annex C 8
Characteristic values of resistance for Upat internal threaded anchors IST under tension	
loads in un-cracked concrete (Design according to CEN/TS 1992-4)	

Table C11: Characteristic values of resistance for reinforcing bars under tension loads in un-cracked and cracked concrete (Design according to CEN/TS 1992-4)

0:					10	10	4.4	- 10			
Size		φ γ _{inst}	[mm]	8	10	12	14	16	20	25	28
Installation safety	[-]				1	,0					
Steel failure											
Characteristic resi		· ·rk,s	[kN]				A _s >	k f _{uk}			
Combined pullou	it and	concrete con	e failure								
Diameter of calcul	ation	d	[mm]	8	10	12	14	16	20	25	28
Characteristic bond resistance in un-cracked concrete C20/25. Dry and wet concrete											
Temperature rang	e I ¹⁾	$ au_{Rk,ucr}$	[N/mm ²]	11,0	11,0	11,0	10,0	10,0	9,5	9,0	8,5
Temperature rang	e II ¹⁾	$ au_{Rk,ucr}$	[N/mm ²]	9,5	9,5	9,0	8,5	8,5	8,0	7,5	7,0
Characteristic bo		sistance in cr		ncrete (C20/25. I	Dry and	wet con	crete			
Temperature rang		$ au_{Rk,cr}$	[N/mm ²]		3,0	5,0	5,0	5,0	4,5	4,0	4,0
Temperature rang	e II ¹⁾	$ au_{Rk,cr}$	[N/mm ²]	-	3,0	4,5	4,5	4,5	4,0	3,5	3,5
		C25/30	[-]				1,	05			
		C30/37	[-]				1,	10			
	[-]	1,15									
Increasing factor \	P _c	C40/50	[-]	1,19							
	[-]	1,22									
		C50/60	[-]				1,	26			
Factor acc. CEN/TS 1992-4-	k ₈	cracked concrete	[-]				7	,2			
5: 2009 Section 6.2.3.3	k ₈	un-cracked concrete	[-]				10),1			
Concrete cone fa	ilure										
Factor acc. CEN/TS 1992-4-	k _{cr}	cracked concrete	[-]				7	,2			
5: 2009 Section 6.2.3.1	k _{ucr}	un-cracked concrete	[-]				10),1			
Edge distance		$c_{cr,N}$	[mm]				1,5	h_{ef}			
Axial distance		s _{cr,N}	[mm]	3,0 h _{ef}							
Splitting failure											
		h/h _{ef} ≥2,0	[mm]				1,0	h _{ef}			
Edge distance c _{cr,s}	sp -	2,0>h/h _{ef} >1,3	[mm]				4,6 h _{ef}	– 1,8 h			
	_	h/h _{ef} ≤1,3	[mm]				2,26	3 h _{ef}			
Spacing		S _{cr,sp}	[mm]				2 c	cr,sp			
		51,0P		1							

¹⁾ See Annex B1

Injection anchor system UPM 44	
Performances Characteristic values of resistance for reinforcing bars under tension loads in un-cracked and cracked concrete (Design according to CEN/TS-1992-4)	Annex C 9

Table C12: Characteristic values of resistance for Upat rebar anchors under tension loads in un-cracked and cracked concrete (Design according to CEN/TS 1992-4)

Size				M12	M16	M20	M24		
Installation safety fac	tor	γinst	[-]	1,0					
Steel failure									
Characteristic resista	nce	$N_{Rk,s}$	[kN]	63	111	173	270		
Partial safety factor		γ _{Ms,N} 1)	[-]		1,	,4			
Combined pullout a	nd co	ncrete cone fai	lure						
Diameter of calculation	on	d	[mm]	12	16	20	25		
Characteristic bond	resis	tance in un-cra	cked con	crete C20/25.	Dry and wet c	oncrete			
Temperature range I	2)	$ au_{Rk,ucr}$	[N/mm ²]	11,0	10,0	9,5	9,0		
Temperature range II ²⁾ τ _{Rk,ucr}		$ au_{Rk,ucr}$	[N/mm ²]	9,0	8,5	8,0	7,5		
Characteristic bond	resis	tance in cracke	d concre	te C20/25. Dry	and wet cond	rete			
Temperature range I	2)	$ au_{Rk,cr}$	[N/mm ²]	5,0	5,0	4,5	4,0		
Temperature range II	2)	$ au_{Rk,cr}$	[N/mm ²]	4,5	4,5	4,0	3,5		
	C25/30	[-]	1,05						
C30/37			[-]	1,10					
Increasing factor Ψ _c		C35/45	[-]	1,15					
increasing factor Tc		C40/50	[-]	1,19					
		C45/55	[-]	1,22					
		C50/60	[-]		1,:	26			
Factor acc. CEN/TS 1992-4-5: 2009	k ₈	cracked concrete	[-]		7	,2			
Section 6.2.2.3	k ₈	un-cracked concrete	[-]		10),1			
Concrete cone failu	re								
Factor acc. CEN/TS 1992-4-5: 2009	k _{cr}	cracked concrete	[-]		7.	,2			
Section 6.2.3.1	k _{ucr}	un-cracked concrete	[-]	10,1					
	h/h _{ef} ≥2,0	[mm]		1,0	h _{ef}				
Edge distance c _{cr,sp}		2,0>h/h _{ef} >1,3	[mm]	4,6 h _{ef} – 1,8 h					
		h/h _{ef} ≤1,3	[mm]		2,26	6 h _{ef}			
Spacing		S _{cr,sp}	[mm]	2 C _{cr,sp}					

¹⁾ In absence of other national regulations

Injection anchor system UPM 44	
Performances	Annex C 10
Characteristic values of resistance for Upat rebar anchors under tension loads in uncracked and cracked concrete (Design according to CEN/TS-1992-4)	

²⁾ See Annex B1

Table C13: Characteristic values of resistance for threaded rods under shear loads (Design according to CEN/TS 1992-4)

Size			М6	M8	M10	M12	M16	M20	M24	M27	M30
Installation safety factor	γinst	[-]		1,0							
Steel failure without lever ar	m										
Characteristic resistance	$V_{Rk,s}$	[kN]				0	,5 A _s x f _t	ık			
Ductility factor acc. to CEN/TS 1992-4-5:2009 Section 6.3.2.1	k ₂	[-]	0,8								
Steel failure with lever arm											
Characteristic resistance	$M^0_{Rk,s}$	[Nm]	$1.2 \times W_{el} \times f_{uk}$								
Concrete pryout failure											
Factor in equation of CEN/TS 1992-4-5:2009 Section 6.3.3	k_3	[-]	2,0								
Concrete edge failure											
Effective length of anchor	I_f	[mm]				$I_f = mi$	n (h _{ef} ; 8	d _{nom})			
Outside diameter of anchor	d_{nom}	[mm]	6	8	10	12	16	20	24	27	30

Table C14: Characteristic values of resistance for Upat internal threaded rods IST under shear loads in un-cracked concrete (Design according to CEN/TS 1992-4)

Size				M8	M10	M12	M16	M20
Installation safety factor		γinst	[-]			1,0		
Steel failure without lever	arm							
	Property	5.8	[kN]	9,2	14,5	21,1	39,2	62,0
Characteristic resistance	class	8.8	[kN]	14,6	23,2	33,7	62,7	90,0
$V_{Rk,s}$	Property	A4	[kN]	12,8	20,3	29,5	54,8	86,0
	class 70	С	[kN]	12,8	20,3	29,5	54,8	86,0
Ductility factor acc. to CEN/ 4-5:2009 Section 6.3.2.1	TS 1992-	k ₂	[-]			0,8		
Steel failure with lever arr	n							
	Property	5.8	[Nm]	20	39	68	173	337
Characteristic resistance	class	8.8	[Nm]	30	60	105	266	519
$M^0_{Rk,s}$	Property	A4	[Nm]	26	52	92	232	454
	class 70	С	[Nm]	26	52	92	232	454
Concrete pryout failure								
Factor in equation of CEN/TS 1992-4-5:2009 Section 6.3.3		k ₃	[-]			2,0		
Concrete edge failure								
Outside diameter of anchor	,	d_{nom}	[mm]	12	16	18	22	28

Injection anchor system UPM 44	
Performances Characteristic values of resistance for threaded rods and Upat internal threaded anchors under shear loads (Design according to CEN/TS 1992-4)	Annex C 11

Table C15: Characteristic values of resistance for reinforcing bars under shear loads (Design according to CEN/TS 1992-4)

Size	ф	[mm]	8	10	12	14	16	20	25	28
Installation safety factor	[-]	1,0								
Steel failure without lever arm										
Characteristic resistance	$V_{Rk,s}$	[kN]	0,5 A _s x f _{uk}							
Ductility factor acc. to CEN/TS 1992-4-5:2009 Section 6.3.2.1	k ₂	[-]	0,8							
Characteristic resistance	$M^0_{\ Rk,s}$	[Nm]				1,2 x V	$V_{el} \times f_{uk}$			
Concrete pryout failure										
Factor in equation of CEN/TS 1992-4-5:2009 Section 6.3.3	k ₃	[-]	2,0							
Concrete edge failure										
Outside diameter of anchor	d_{nom}	[mm]	8	10	12	14	16	20	25	28

Table C16: Characteristic values of resistance for Upat rebar anchors under shear loads (Design according to CEN/TS 1992-4)

Size			M12	M16	M20	M24		
Installation safety factor	γinst	[-]	1,0					
Steel failure without lever arm								
Characteristic resistance	$V_{Rk,s}$	[kN]	30	55	86	124		
Partial safety factor	γ _{Ms,} ∨ 1)	[-]		1,	56			
Ductility factor acc. to CEN/TS 1992-4-5:2009 Section 6.3.2.1	k ₂	[-]	0,8					
Steel failure with lever arm								
Characteristic resistance	$M^0_{Rk,s}$	[Nm]	92	233	454	785		
Partial safety factor	γ _{Ms,V} 1)	[-]		1,	56			
Concrete pryout failure								
Factor in equation of CEN/TS 1992-4-5, Section 6.3.3	k ₃	[-]	2,0					
Concrete edge failure								
Outside diameter of anchor	d _{nom}	[mm]	12	16	20	24		

¹⁾ In absence of other national regulations

Injection anchor system UPM 44	
Performances Characteristic values of resistance for reinforcing bars and Upat rebar anchors under shear loads (Design according to CEN/TS 1992-4)	Annex C 12

Table C17: Displacements under tension load 1) for threaded rods

Size		М6	M8	M10	M12	M16	M20	M24	M27	M30
Un-cracked concre	te									
δ_{N0} -Factor	[mm/N/mm ²]	0,09	0,09	0,09	0,10	0,10	0,10	0,10	0,11	0,12
δ _{N∞} -Factor	[mm/N/mm ²]	0,10	0,10	0,10	0,12	0,12	0,12	0,13	0,13	0,14
Cracked concrete										
δ_{N0} -Factor	[mm/N/mm ²]			0,12	0,12	0,13	0,13	0,13	0,14	0,15
δ _{N∞} -Factor	[mm/N/mm ²]			0,27	0,30	0,30	0,30	0,35	0,35	0,40

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-Factor} \cdot \tau$

 $\delta_{N\infty} = \delta_{N\infty}\text{-Factor} \cdot \tau$

Table C18: Displacements under shear load 1) for threaded rods

Size		М6	M8	M10	M12	M16	M20	M24	M27	M30
δ_{V0} -Factor	[mm/kN]	0,11	0,11	0,11	0,10	0,10	0,09	0,09	0,08	0,07
δ _{v∞} -Factor	[mm/kN]	0,12	0,12	0,12	0,11	0,11	0,10	0,10	0,09	0,09

¹⁾ Calculation of the displacement

 $\delta_{\text{V0}} = \delta_{\text{V0}}\text{-Factor} \cdot \text{V}$

 $\delta_{V\infty} = \delta_{V\infty}\text{-Factor}\cdot V$

Table C19: Displacements under tension load 1) for Upat internal threaded anchors IST

Size		M8	M10	M12	M16	M20
$\delta_{N0} ext{-}Factor$	[mm/N/mm ²]	0,1	0,11	0,12	0,13	0,14
$\delta_{N\infty}$ -Factor	[mm/N/mm ²]	0,13	0,14	0,15	0,16	0,18

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-Factor} \cdot \tau$

 $\delta_{N\infty} = \delta_{N\infty}\text{-Factor} \cdot \tau$

Table C20: Displacements under shear load 1) for Upat internal threaded anchors IST

Size		M8	M10	M12	M16	M20
δ_{Vo} -Factor	[mm/kN]	0,12	0,12	0,12	0,12	0,12
$\delta_{V\infty}$ -Factor	[mm/kN]	0,14	0,14	0,14	0,14	0,14

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}\text{-Factor} \cdot V$

 $\delta_{V\infty} = \delta_{V\infty}$ -Factor · V

Injection anchor system UPM 44	
Performances Displacements threaded rods and Upat internal threaded anchor IST	Annex C 13

Table C21: Displacements under tension load 1) for reinforcing bars

Size ϕ	[mm]	8	10	12	14	16	20	25	28
Un-cracked concrete									
δ_{N0} -Factor	[mm/N/mm ²]	0,09	0,09	0,10	0,10	0,10	0,10	0,10	0,11
δ _{N∞} -Factor	[mm/N/mm ²]	0,10	0,10	0,12	0,12	0,12	0,12	0,13	0,13
Cracked concrete									
δ_{N0} -Factor	[mm/N/mm ²]		0,12	0,12	0,13	0,13	0,13	0,13	0,14
δ _{N∞} -Factor	[mm/N/mm ²]	-	0,27	0,30	0,30	0,30	0,30	0,35	0,37

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-Factor} \cdot \tau$

 $\delta_{N\infty} = \delta_{N\infty}$ -Factor $\cdot \tau$

Table C22: Displacements under shear load 1) for reinforcing bars

Size	ф	[mm]	8	10	12	14	16	20	25	28
δ_{V0} -Factor		[mm/kN]	0,11	0,11	0,10	0,10	0,10	0,09	0,09	0,08
δ _{V∞} -Factor		[mm/kN]	0,12	0,12	0,11	0,11	0,11	0,10	0,10	0,09

¹⁾ Calculation of the displacement

 $\delta_{\text{V0}} = \delta_{\text{V0}}\text{-Factor} \cdot \text{V}$

 $\delta_{V\infty} = \delta_{V\infty}\text{-Factor} \cdot V$

Table C23: Displacements under tension load ¹⁾ for Upat rebar anchor

Size	M12	M16	M20	M24	
Un-cracked concrete					
δ_{N0} -Factor	[mm/N/mm ²]	0,10	0,10	0,10	0,10
$\delta_{N\infty}$ -Factor	[mm/N/mm ²]	0,12	0,12	0,12	0,13
Cracked concrete					
δ_{N0} -Factor	[mm/N/mm ²]	0,12	0,13	0,13	0,13
δ _{N∞} -Factor	[mm/N/mm ²]	0,30	0,30	0,30	0,35

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-Factor} \cdot \tau$

 $\delta_{N\infty} = \delta_{N\infty}\text{-Factor} \cdot \tau$

Table C24: Displacements under shear load 1) for Upat rebar anchor

Size		M12	M16	M20	M24
δ_{V0} -Factor	[mm/kN]	0,1	0,1	0,09	0,09
δ _{V∞} -Factor	[mm/kN]	0,11	0,11	0,10	0,1

¹⁾ Calculation of the displacement

 $\delta_{\text{V0}} = \delta_{\text{V0}}\text{-Factor} \cdot \text{V}$

 $\delta_{V\infty} = \delta_{V\infty}\text{-Factor} \cdot V$

Injection anchor system UPM 44	
Performances Displacements reinforcing bars and Upat rebar anchor	Annex C 14