

DECLARATION OF PERFORMANCE

No. 0064 - EN

1. Unique identification code of the product-type: Injection system UPM 33

2. Intended use/es:

Product	Intended use/es			
Bonded anchor for use in concrete	Anchorages for which requirements for mechanical resistance and stability and			
	safety in use shall be fulfilled. They are for fixing and/or supporting structural			
	elements (which contribute to the stability of the works) or heavy units, see			
	appendix, especially Annexes B 1 to B 6			

3. Manufacturer: fischerwerke GmbH & Co. KG, Otto-Hahn-Straße 15, 79211 Denzlingen, Germany

4. Authorised representative: --

5. System/s of AVCP: 1

6a. Harmonised standard: ---

Notified body/ies: ---

6b. European Assessment Document: ETAG 001; 2013-04

European Technical Assessment: ETA-10/0171; 2015-08-27

Technical Assessment Body: DIBt

Notified body/ies: 1343 - MPA Darmstadt

7. Declared performance/s:

Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for design according to TR 029	See appendix, especially Annexes C 1 to C 3
Characteristic resistance for design according to CEN/TS 1992-4:2009	See appendix, especially Annexes C 4 to C 6
Displacements under tension an shear loads	See appendix, especially Annex C 7

Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	NPD

8. Appropriate Technical Documentation and/or Specific Technical Documentation: ---

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

1.V. A. Dun

Andreas Bucher, Dipl.-Ing.

Wolfgang Hengesbach, Dipl.-Ing., Dipl.-Wirtsch.-Ing.

i.V. W. Kylal

Tumlingen, 2015-09-03

- This DoP has been prepared in different languages. In case there is a dispute on the interpretation the english version shall always prevail.

- The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Specific Part

1 Technical description of the product

The Injection system UPM 33 is a bonded anchor consisting of a cartridge with injection mortar UPM 33 and a steel element. The steel element consist of

- an Upat threaded rod or of sizes M6 to M30 or
- an Upat internal threaded anchor IST of sizes M8 to M20 or

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for design according to TR 029	See Annex C 1 to C 3
Characteristic resistance for design according to CEN/TS 1992-4:2009	See Annex C 4 to C 6
Displacements under tension and shear loads	See Annex C 7

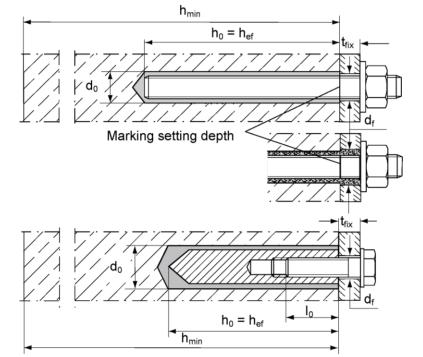
3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)


The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Installation condition

Upat threaded rod prepositioned anchorage

Upat threaded rodpush through anchorage
(annular gap filled with mortar)

Upat internal threaded anchor IST only pre-positioned anchorage

Injection	system	UPM	33
-----------	--------	-----	----

Annex A 1

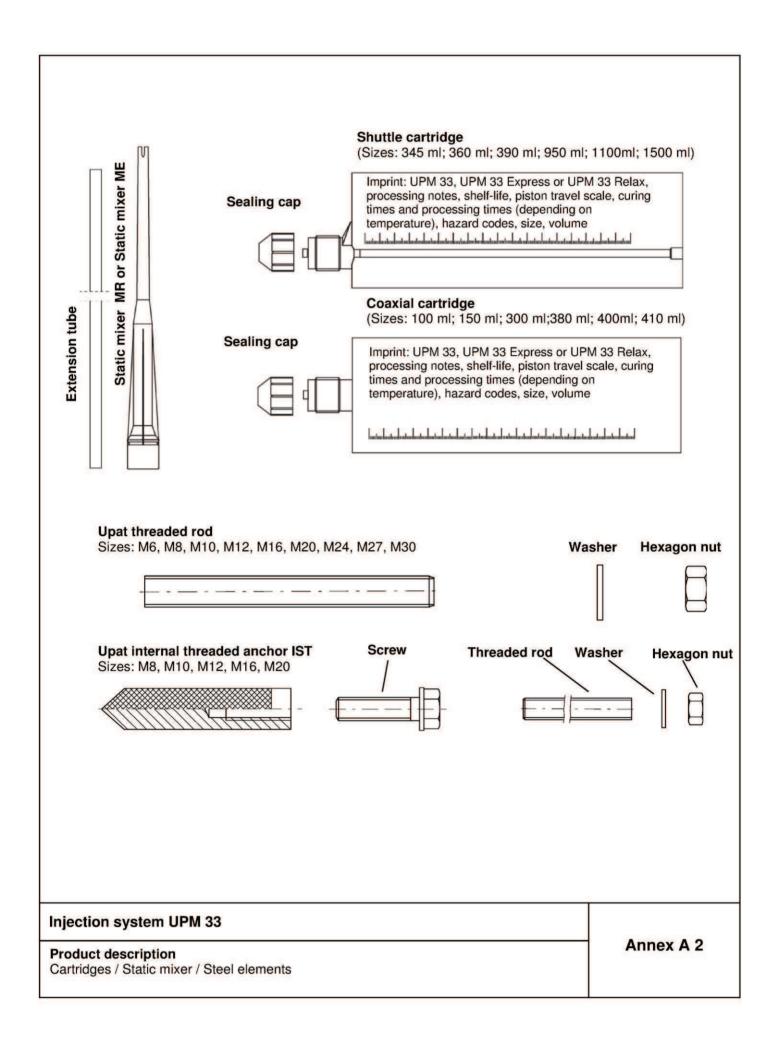


Table A1: Materials

Part	Designation	Material						
1	Mortar cartridge							
		Steel, zinc plated	Stainless steel A4	High corrosion- resistant steel C				
2	Threaded rod	Property class 5.8 or 8.8; EN ISO 898-1: 2013 zinc plated ≥ 5µm, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004 f _{uk} ≤ 1000 N/mm ² A ₅ > 8% fracture elongation	Property class 50, 70 or 80 EN ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062 EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 8\% \text{ fracture}$	Property class 50 or 80 EN ISO 3506:2009 or property class 70 with f_{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2014 $f_{uk} \le 1000$ N/mm ² $A_5 > 8\%$ fracture elongation				
3	Washer ISO 7089:2000	zinc plated ≥ 5µm, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004	elongation 1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014				
4	Hexagon nut	Property class 5 or 8; EN ISO 898-2:2013 zinc plated ≥ 5µm, ISO 4042:1999 A2K or hot-dip galvanised ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 50, 70 or 80 EN ISO 3506:2009 1.4565; 1.4529 EN 10088-1:2014				
5	Internal threaded anchor IST	Property class 5.8; EN 10277-1:2008-06 zinc plated ≥ 5µm, ISO 4042:1999 A2K	Property class 70 EN ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014				
6	Screw or threaded rod for internal threaded anchor IST	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated ≥ 5µm, ISO 4042:1999 A2K	Property class 70 EN ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014				

Injection system UPM 33	
Product description Materials	Annex A 3

Specifications of intended use

Table B1: Overview use categories and performance categories

Anchorage	s subject to	UPM 33 with									
		Threaded rod		Internal threaded anchor IST					Internal threaded anchor IST		
		-									
Hammer d	rilling			all sizes							
Static and quasi static	un- cracked concrete	M6 to M30	Tables: C1, C3 ,C5,	M8 to M20	Tables: C2, C4, C6, C8, C11, C12						
load, in	cracked concrete	M10 to M20	C7, C9, C10	_							
Use category	Dry or wet concrete	Me	6 to M30	M8 to M20							
Installation	temperature			-10	0°C to +40°C						
In-service temper-	Temperature range I	-4	0°C to +80°C	(max. long term temperature +50°C and max. short term temperature +80°C)							
ature	Temperature range II	.1 -40°C to +120°C		(max. long term temperature +72°C and max. short term temperature +120°C)							

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013
- Strength classes C20/25 to C50/60 according to EN 206:2013

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions exist (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other
 particular aggressive conditions exist (high corrosion resistant steel)
 Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of
 seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e. g. in
 desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Anchorages have to be designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement
 or to supports, etc.)
- Anchorages under static or quasi-static actions are designed in accordance with TR 029 "Design of bonded anchors". Edition September 2010 or CEN/TS 1992-4:2009

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Overhead installation allowed

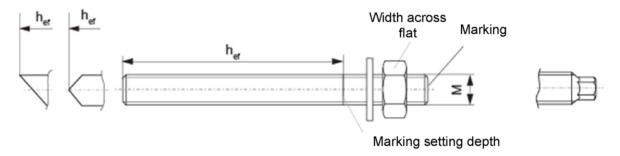

Injection system UPM 33	,
Intended Use Specifications	Annex B 1

Table B2: Installation parameters threaded rods

Size				М6	M8	M10	M12	M16	M20	M24	M27	M30
Width across f	flat	SW	[mm]	10	13	17	19	24	30	36	41	46
Nominal drill b	it diameter	d _o	[mm]	8	10	12	14	18	24	28	30	35
Drill hole dept	h	h_0	[mm]	$h_0 = h_{ef}$								
Effective anch	orage denth	$h_{\rm ef,min}$	[mm]	50	60	60	70	80	90	96	108	120
Lifective afford	orage deptir	$h_{ef,max}$	[mm]	72	160	200	240	320	400	480	540	600
Maximum torq	ue moment	$T_{inst,max}$	[Nm]	5	10	20	40	60	120	150	200	300
Minimum space	cing	Smin	[mm]	40	40	45	55	65	85	105	125	140
Minimum edge	e distance	C _{min}	[mm]	40	40	45	55	65	85	105	125	140
Diameter of clearance hole in the	Pre- positioned anchorage	d _f	[mm]	7	9	12	14	18	22	26	30	33
fixture 1)	Push through anchorage	d_f	[mm]	9	11	14	16	20	26	30	32	40
Minimum thick concrete mem		h _{min}	h_{min} [mm] $h_{ef} + 30 (\ge 100)$ $h_{ef} + 2d_0$)						

¹⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1

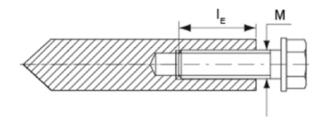
Upat threaded rods

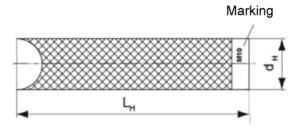
Marking:

Property class 8.8 or high corrosion-resistant steel C, property class 80: ● Stainless steel A4, property class 50 or high corrosion-resistant steel C, property class 50:●●

Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:

- Materials, dimensions and mechanical properties according Annex A 3, Table A1
- Inspection certificate 3.1 according to EN 10204:2004, the documents should be stored
- Marking of embedment depth


Injection system UPM 33	
Intended Use Installation parameters threaded rods	Annex B 2


Table B3: Installation parameters internal threaded anchors IST

Size			М8	M10	M12	M16	M20
Diameter of anchor	d_H	[mm]	12	16	18	22	28
Nominal drill bit diameter	d_{o}	[mm]	14	18	20	24	32
Drill hole depth	h_o	[mm]			$h_0 = h_{ef}$		
Effective anchorage depth (h _{ef} = L _H)	h_{ef}	[mm]	90	90	125	160	200
Maximum torque moment	$T_{inst,max}$	[Nm]	10	20	40	80	120
Minimum spacing	s_{min}	[mm]	55	65	75	95	125
Minimum edge distance	C _{min}	[mm]	55	65	75	95	125
Diameter of clearance hole in the fixture ¹⁾	d _f	[mm]	9	12	14	18	22
Minimum thickness of concrete member	h_{min}	[mm]	120	125	165	210	265
Maximum screw-in depth	$\mathbf{I}_{E,max}$	[mm]	18	23	26	35	45
Minimum screw-in depth	$I_{E,min}$	[mm]	8	10	12	16	20

¹⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1

Upat internal threaded anchor IST

Marking: anchor size e.g.: M10

Stainless steel in addition A4 e.g.: M10 A4 High corrosion-resistant steel in addition C

e.g.: M10 C

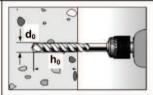
Fastening screw or threaded rods including washer and nuts must comply with the appropriate material and strength class of table A1

Injection system UPM 33	
Intended Use Installation parameters internal threaded anchors IST	Annex B 3

Table B4: Parameters of steel brush Upat BS Ø

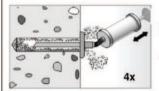
Drill bit diameter	[mm]	8	10	12	14	16	18	20	24	25	28	30	35
Steel brush diameter d _b	[mm]	9	11	14	16	20	20	25	26	27	30	40	40

Table B5: Maximum processing time of the mortar and minimum curing time (During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature).

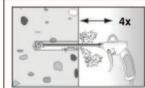

	Minimum curing time ¹⁾ t _{cure} [minutes] Temperature at				System	Maximum processing time t _{work} [minutes]			
		base	UPM 33 Express	UPM 33	UPM 33 Relax	temperature (mortar) [°C]	UPM 33 Express	UPM 33	UPM 33 Relax
-10	to	-5	12 hours						
>-5	to	±0	3 hours	24 hours		±0	5		
>±0	to	+5	3 hours	3 hours	6 hours	+5	5	13	
>+5	to	+10	50	90	3 hours	+10	3	9	20
>+10	to	+20	30	60	2 hours	+20	1	5	10
>+20	to	+30		45	60	+30		4	6
>+30	to	+40		35	30	+40		2	4

¹⁾ For wet concrete the curing time must be doubled.

Injection system UPM 33	
Intended Use	Annex B 4
Cleaning tools / Processing - and curing times	

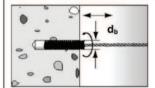

Installation instructions part 1 Drilling and cleaning the hole

1

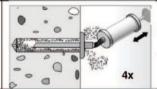


Drill the hole. Drill hole diameter d₀ and drill hole depth h₀ see Tables **B2**, **B3**

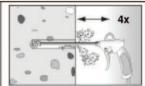
2



 $h_{ef} \le 12d$ and $d_0 < 18$ mm: Blow out the drill hole four times by hand.

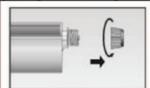

 h_{ef} > 12d and/or $d_0 \ge$ 18 mm: Blow out the drill hole four times, using oil-free compressed air (p > 6 bar).

3

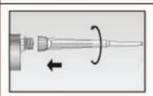


Brush the drill hole four times using an adequate steel brush (see Table **B4**).

4


 $h_{ef} \le 12d$ and $d_0 < 18$ mm: Blow out the drill hole four times by hand.

h_{ef} > 12d and/or d₀ ≥ 18 mm: Blow out the drill hole four times, using oil-free compressed air (p > 6 bar).


Preparing the cartridge

5

Twist off the sealing cap.

6

Twist on the static mixer (the spiral in the static mixer must be clearly visible).

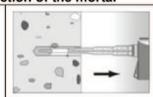
7

Place the cartridge into the suitable dispenser.

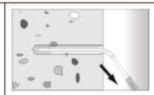
8

Press out approximately 10 cm of mortar until the resin is permanently grey in colour. mortar which is not grey in colour will not cure and must be disposed of.

Injection system UPM 33

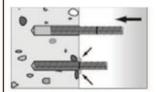

Intended Use

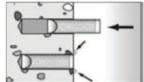
Installation instructions part 1


Annex B 5

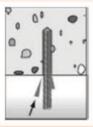
Installation instructions part 2 Injection of the mortar

9

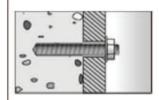

Fill approximately 2/3 of the drill hole with mortar. Always begin from the bottom of the hole to eliminate voids.



For drill hole depth ≥ 150 mm use an extension tube.

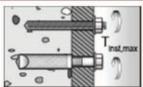

Installation Upat threaded rods or internal threaded anchors IST

10



Only use clean and oil-free anchor elements. Press the anchor rod or internal threaded anchor IST down to the bottom of the hole, turning it slightly while doing so. After inserting the anchor element, excess mortar must emerge around the anchor element.

For overhead installation support the anchor element with wedges.


For push-through installation fill the annular gap also with mortar.

11

Wait for the specified curing time t_{cure} see Table **B5**.

12

Mounting the fixture T_{inst,max} see Tables **B2** or **B3**

Injection system UPM 33

Intended Use

Installation instructions part 2

Annex B 6

Table C1: Characteristic values of resistance for threaded rods under tension loads in un-cracked and cracked concrete (Design according to TR 029)

Size			М6	M8	M10	M12	M16	M20	M24	M27	M30
1	and wet oncrete 72	[-]					1,2				
Combined pullout an	d concrete co	ne failure									
Diameter of calculation	ı d	[mm]	6	8	10	12	16	20	24	27	30
Characteristic bond resistance in un-cracked concrete C20/25. Dry and wet concrete											
Temperature range I ¹⁾	$ au_{Rk,ucr}$	[N/mm ²]	9,0	11,0	11,0	11,0	10,0	9,5	9,0	8,5	8,5
Temperature range II ¹⁾	$ au_{Rk,ucr}$	[N/mm ²]	6,5	9,5	9,5	9,0	8,5	8,0	7,5	7,0	7,0
Characteristic bond resistance in cracked concrete C20/25. Dry and wet concrete											
Temperature range I ¹⁾	$ au_{Rk,cr}$	[N/mm ²]			6,0	6,0	6,0	5,5	-	-	-
Temperature range II ¹⁾	$ au_{Rk,cr}$	[N/mm ²]			5,0	5,0	5,0	5,0	-		
	C25/30	[-]	1,05								
	C30/37	[-]					1,10				
Increasing factor Ψ _c	C35/45	[-]					1,15				
Increasing factor Ψ_c	C40/50	[-]					1,19				
	C45/55	[-]					1,22				
	C50/60	[-]	1,26								
Splitting failure											
	h/h _{ef} ≥2,0	[mm]					1,0 h _{ef}				
Edge distance c _{cr,sp}	2,0>h/h _{ef} >1,3	[mm]				4,6	h _{ef} – 1,	8 h			
	h/h _{ef} ≤1,3	[mm]					2,26 h _{ef}				
Spacing	S _{cr,sp}	[mm]					2 c _{cr,sp}				

¹⁾ See Annex B1

Injection system UPM 33	
Performances	Annex C 1
Characteristic values of resistance for threaded rods under tension loads in un-cracked and cracked concrete (Design according to TR 029)	

Table C2: Characteristic values of resistance for internal threaded anchors IST under tension loads in un-cracked concrete (Design according to TR 029)

Size				M8	M10	M12	M16	M20
Installation safety factor	ation safety Dry and wet concrete γ_2 [-]			1,2				
Steel failure								
	Property	5.8	[kN]	19	29	43	79	123
Characteristic resistance	class	8.8	[kN]	29	47	68	108	179
with screw N _{Rk,s}	Property	A4	[kN]	26	41	59	110	172
	class 70	С	[kN]	26	41	59	110	172
Combined pullout and co	ncrete cone f	ailure						
Diameter of calculation		d _H	[mm]] 12 16 18 22				
Characteristic bond resis	ncrete C2	20/25. Dry and wet concrete						
1 1 1 1				40	50	75	115	
Temperature range II ¹⁾					30	40	60	95
		C25/30	[-]	1,05				
	_	C30/37	[-]			1,10		
Increasing factor III	_	C35/45	[-]			1,15		
Increasing factor Ψ _c	_	C40/50	[-]			1,19		
	_	C45/55	[-]			1,22		
		C50/60	[-]			1,26		
Splitting failure								
		h/h _{ef} ≥2,0	[mm]	1,0 h _{ef}				
Edge distance c _{cr,sp}	2,0>	h/h _{ef} >1,3	[mm]	4,6 h _{ef} – 1,8 h				
		h/h _{ef} ≤1,3	[mm]	2,26 h _{ef}				
Spacing		s _{cr,sp} [mm] 2 c _{cr,sp}						

¹⁾ See Annex B1

Table C3: Characteristic values of resistance for threaded rods under shear loads (Design according to TR 029)

Size			М6	M8	M10	M12	M16	M20	M24	M27	M30
Concrete pryout failure											
Factor k in equation (5.7) of TR 029 for the design of bonded anchors	k	[-]					2,0				

Injection system UPM 33	
Performances	Annex C 2
Characteristic values of resistance for internal threaded rods under tension loads in uncracked concrete and for threaded rods under shear loads (Design according to TR 029)	

Table C4: Characteristic values of resistance for internal threaded rods IST under shear loads (Design according to TR 029)

Size				М8	M10	M12	M16	M20
Installation safety factor		γ2	[-]			1,2		
Steel failure without leve	r arm							
	Property	5.8	[kN]	9,2	14,5	21,1	39,2	62,0
Characteristic	class	8.8	[kN]	14,6	23,2	33,7	62,7	90,0
resistance V _{Rk,s}	Property	A4	[kN]	12,8	20,3	29,5	54,8	86,0
	class 70	С	[kN]	12,8	20,3	29,5	54,8	86,0
Steel failure with lever ar	m							
	Property	5.8	[Nm]	20	39	68	173	337
Characteristic	class	8.8	[Nm]	30	60	105	266	519
resistance M ⁰ _{Rk,s}	Property	A4	[Nm]	26	52	92	232	454
	class 70	С	[Nm]	26	52	92	232	454
Concrete pryout failure								
Factor k in equation (5.7) of the design of bonded anch		k	[-]			2,0		

Injection system UPM 33	
Performances Characteristic values of resistance for internal threaded anchors IST under shear loads (Design according to TR 029)	Annex C 3

Table C5: Characteristic values of resistance for threaded rods under tension loads in un-cracked and cracked concrete (Design according to CEN/TS 1992-4)

Size				М6	М8	M10	M12	M16	M20	M24	M27	M30
Installation safety factor γ _{inst} Steel failure		Dry and wet concrete	[-]					1,2				
Characteristic resis	stance	e N _{Rk.s}	[kN]					A _s x f _{uk}				
Combined pullou		1111,0										
Diameter of calcula		d	[mm]	6	8	10	12	16	20	24	27	30
Characteristic bo	nd re	sistance in u		ed cond	rete C2	20/25. D		wet cor				
Temperature range			[N/mm ²]		11,0	11,0	11,0	10,0	9,5	9,0	8,5	8,5
Temperature range			[N/mm ²]		9,5	9,5	9,0	8,5	8,0	7,5	7,0	7,0
Characteristic bo	nd re	•			e C20/2	5. Dry a	and we	concre	ete			
Temperature range	e l ¹⁾	$\tau_{Rk,cr}$	[N/mm ²]			6,0	6,0	6,0	5,5			
Temperature range	e II ¹⁾		[N/mm ²]			5,0	5,0	5,0	5,0			-
C25/30 [-]								1,05				
		C30/37	[-]	1,10								
Increasing factor 4	J	C35/45	[-]	1,15								
Increasing factor 4	С	C40/50	[-]					1,19				
		C45/55	[-]					1,22				
		C50/60	[-]					1,26				
Factor acc. CEN/TS 1992-	k ₈	cracked concrete	[-]					7,2				
4:2009 Section 6.2.2.3	k ₈	un-cracked concrete	[-]					10,1				
Concrete cone fai	lure	· · · · ·										
Factor acc. CEN/TS 1992-	k _{cr}	cracked concrete	[-]					7,2				
4:2009 Section 6.2.3.1	k _{ucr}	un-cracked concrete	[-]					10,1				
		h/h _{ef} ≥2,0	[mm]					1,0 h _{ef}				
Edge distance c _{cr,s}	2	2,0>h/h _{ef} >1,3	[mm]				4,6	6 h _{ef} – 1,	8 h			
		h/h _{ef} ≤1,3	[mm]	2,26 h _{ef}								
Spacing		S _{cr,sp}	[mm]					2 c _{cr,sp}				

¹⁾ See Annex B1

Injection system UPM 33	
Performances	Annex C 4
Characteristic values of resistance for threaded rods under tension loads in un-cracked and cracked concrete (Design according to CEN/TS-1992-4)	

Table C6: Characteristic values of resistance for internal threaded anchors IST under tension loads in un-cracked concrete (Design according to CEN/TS 1992-4)

Size				М8	M10	M12	M16	M20
Installation safety factor γ _{inst}	Dry and w	et concrete	[-]			1,2		
Steel failure								
	Property	5.8	[kN]	19	29	43	79	123
Characteristic resistance	class	8.8	[kN]	29	47	68	108	179
with screw N _{Rk,s}	Property	A4	[kN]	26	41	59	110	172
	class 70	С	[kN]	26	41	59	110	172
	Property	5.8	[-]			1,50		
Partial	class	8.8	[-]			1,50		
safety factor γ _{Ms,N} ²⁾	Property							
γMs,N	class 70	С	[-]			1,87		
Combined pullout and co	ncrete cone	failure				,		
Diameter of calculation		d	[mm]	12	16	18	22	28
Characteristic bond resis	tance in un		[kN]		40	50	7.5	145
Temperature range I ¹⁾		N ⁰ _{Rk,p}		30	40	50	75	115
Temperature range II ¹⁾		N ⁰ _{Rk,p}	[kN]	25	30	40	60	95
	-	C25/30	[-]			1,05		
	-	C30/37	[-]			1,10		
Increasing factor Ψ_c	-	C35/45 C40/50	[-] [-]			1,15 1,19		
	-	C45/55	[-]			1,13		
	-	C50/60	[-]			1,26		
Factor acc. CEN/TS 1992- Section 6.2.2.3	4-5:2009	k ₈	[-]			10,1		
Concrete cone failure								
Factor acc. CEN/TS 1992-ASection 6.2.3.1	4-5:2009	k _{ucr}	[-]			10,1		
		h/h _{ef} ≥2,0	[mm]			1,0 h _{ef}		
Edge distance c _{cr,sp}		0>h/h _{ef} >1,3	[mm]		4,6	6 h _{ef} – 1,8	3 h	
		h/h _{ef} ≤1,3	[mm]			2,26 h _{ef}		
Spacing		S _{cr,sp}	[mm]			$2 c_{cr,sp}$		

Injection system UPM 33	
Performances	Annex C 5
Characteristic values of resistance for internal threaded anchors IST under tension loads in un-cracked concrete (Design according to CEN/TS 1992-4)	

¹⁾ See Annex B1 ²⁾ In absence of other national regulations

Table C7: Characteristic values of resistance for threaded rods under shear loads (Design according to CEN/TS 1992-4)

Size			М6	M8	M10	M12	M16	M20	M24	M27	M30
Installation safety factor	γinst	[-]	1,2								
Steel failure without lever ar	m										
Characteristic resistance	$V_{Rk,s}$	[kN]	$0.5 A_s \times f_{uk}$								
Ductility factor acc. to CEN/TS 1992-4-5:2009 Section 6.3.2.1	k ₂	[-]	0,8								
Steel failure with lever arm											
Characteristic resistance	$M^0_{Rk,s}$	[Nm]	$1,2 \times W_{el} \times f_{uk}$								
Concrete pryout failure											
Factor in equation of CEN/TS 1992-4-5:2009 Section 6.3.3	k_3	[-]	2,0								
Concrete edge failure											
Effective length of anchor	I_f	[mm]	$I_f = min (h_{ef}; 8 d_{nom})$								
Outside diameter of anchor	d_{nom}	[mm]	6	8	10	12	16	20	24	27	30

Table C8: Characteristic values of resistance for internal threaded rods IST under shear loads in uncracked concrete (Design according to CEN/TS 1992-4)

Size				M8	M10	M12	M16	M20
Installation safety factor		γinst	[-]			1,2		
Steel failure without lever	arm							
	Property	5.8	[kN]	9,2	14,5	21,1	39,2	62,0
Characteristic resistance	class	8.8	[kN]	14,6	23,2	33,7	62,7	90,0
$V_{Rk,s}$	Property	A4	[kN]	12,8	20,3	29,5	54,8	86,0
	class 70	С	[kN]	12,8	20,3	29,5	54,8	86,0
Ductility factor acc. to CEN/TS 1992-4-5:2009 Section 6.3.2.1			[-]			0,8		
Steel failure with lever ar	Steel failure with lever arm							
	Property	5.8	[Nm]	20	39	68	173	337
Characteristic resistance	class	8.8	[Nm]	30	60	105	266	519
M ⁰ _{Rk,s}	Property	A4	[Nm]	26	52	92	232	454
	class 70	С	[Nm]	26	52	92	232	454
Concrete pryout failure					•		•	
Factor in equation of CEN/TS 1992-4-5:2009 Section 6.3.3		k ₃	[-]			2,0		
Concrete edge failure								
Outside diameter of anchor	-	d_{nom}	[mm]	12	16	18	22	28

Injection system UPM 33	
Performances Characteristic values of resistance for threaded rods and internal threaded anchors IST under shear loads (Design according to CEN/TS 1992-4)	Annex C 6

Table C9: Displacements under tension load 1) for threaded rods

Size		М6	M8	M10	M12	M16	M20	M24	M27	M30
un-cracked concret	te									
δ_{N0} -Factor	[mm/N/mm ²]	0,09	0,09	0,09	0,10	0,10	0,10	0,10	0,11	0,12
δ _{N∞} -Factor	[mm/N/mm ²]	0,10	0,10	0,10	0,12	0,12	0,12	0,13	0,13	0,14
Cracked concrete										
δ_{N0} -Factor	[mm/N/mm ²]			0,12	0,12	0,13	0,13		-	
δ _{N∞} -Factor	[mm/N/mm ²]			0,27	0,30	0,30	0,30			

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-Factor} \cdot \tau$

 $\delta_{N\infty} = \delta_{N\infty}\text{-Factor} \cdot \tau$

Table C10: Displacements under shear load 1) for threaded rods

Size		М6	M8	M10	M12	M16	M20	M24	M27	M30
δ_{V0} -Factor	[mm/kN]	0,11	0,11	0,11	0,10	0,10	0,09	0,09	0,08	0,07
δ _{v∞} -Factor	[mm/kN]	0,12	0,12	0,12	0,11	0,11	0,10	0,10	0,09	0,09

¹⁾ Calculation of the displacement

 $\delta_{\text{V0}} = \delta_{\text{V0}}\text{-Factor} \cdot \text{V}$

 $\delta_{V\infty} = \delta_{V\infty}\text{-Factor}\cdot V$

Table C11: Displacements under tension load 1) for internal threaded anchors IST

Size		М8	M10	M12	M16	M20
δ_{N0} -Factor	[mm/N/mm ²]	0,1	0,11	0,12	0,13	0,14
δ _{N∞} -Factor	[mm/N/mm ²]	0,13	0,14	0,15	0,16	0,18

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-Factor} \cdot \tau$

 $\delta_{N\infty} = \delta_{N\infty}\text{-Factor} \cdot \tau$

Table C12: Displacements under shear load 1) for internal threaded anchors IST

Size		M8	M10	M12	M16	M20
δ_{Vo} -Factor	[mm/kN]	0,12	0,12	0,12	0,12	0,12
$\delta_{V\infty}$ -Factor	[mm/kN]	0,14	0,14	0,14	0,14	0,14

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}\text{-Factor} \cdot V$

 $\delta_{V\infty} = \delta_{V\infty}\text{-Factor} \cdot V$

Injection system UPM 33	
Performances Displacements threaded rods and internal threaded anchors IST	Annex C 7