

DECLARATION OF PERFORMANCE

DoP: 0155

for Upat concrete screw UCS (Metal anchors for use in concrete (heavy-duty type)) - EN

1. Unique identification code of the product-type: DoP: 0155

2. Intended use/es: Post-installed fastening in cracked or uncracked concrete, see appendix, especially Annexes B 1 to B 4

3. Manufacturer: Upat Vertriebs GmbH, Bebelstraße 11, 79108 Freiburg im Breisgau, Germany

4. Authorised representative: --

5. System/s of AVCP: 1

6. European Assessment Document: EAD 330232-00-0601

European Technical Assessment: ETA-18/0762; 2018-12-12

Technical Assessment Body: DIBt

Notified body/ies: 1343 - MPA Darmstadt

7. Declared performance/s:

Mechanical resistance and stability (BWR 1)

- Characteristic resistance to tension load (static and quasi-static loading): See appendix, especially Annex C 1
- Characteristic resistance to shear load (static and quasi-static loading): See appendix, especially Annex C 1
- Displacements (static and quasi-static loading): See appendix, especially Annex C 5
- Characteristic resistance and displacements for seismic performance categories C1 and C2:
 See appendix, especially Annexes C 2, C 3 and C 5

Safety in case of fire (BWR 2)

- Reaction to fire: Anchorages satisfy requirements for Class A 1
- Resistance to fire: See appendix, especially Annex C 4
- 8. Appropriate Technical Documentation and/or Specific Technical Documentation: ---

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

1.V. A. DULL

Andreas Bucher, Dipl.-Ing.

Wolfgang Hengesbach, Dipl.-Ing., Dipl.-Wirtsch.-Ing.

i.V. W. Kylal

Tumlingen, 2018-12-19

- This DoP has been prepared in different languages. In case there is a dispute on the interpretation the english version shall always prevail.

- The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Specific Part

1 Technical description of the product

The Upat concrete screw UCS is an anchor of sizes 8, 10, 12 and 14 mm made of hardened carbon steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

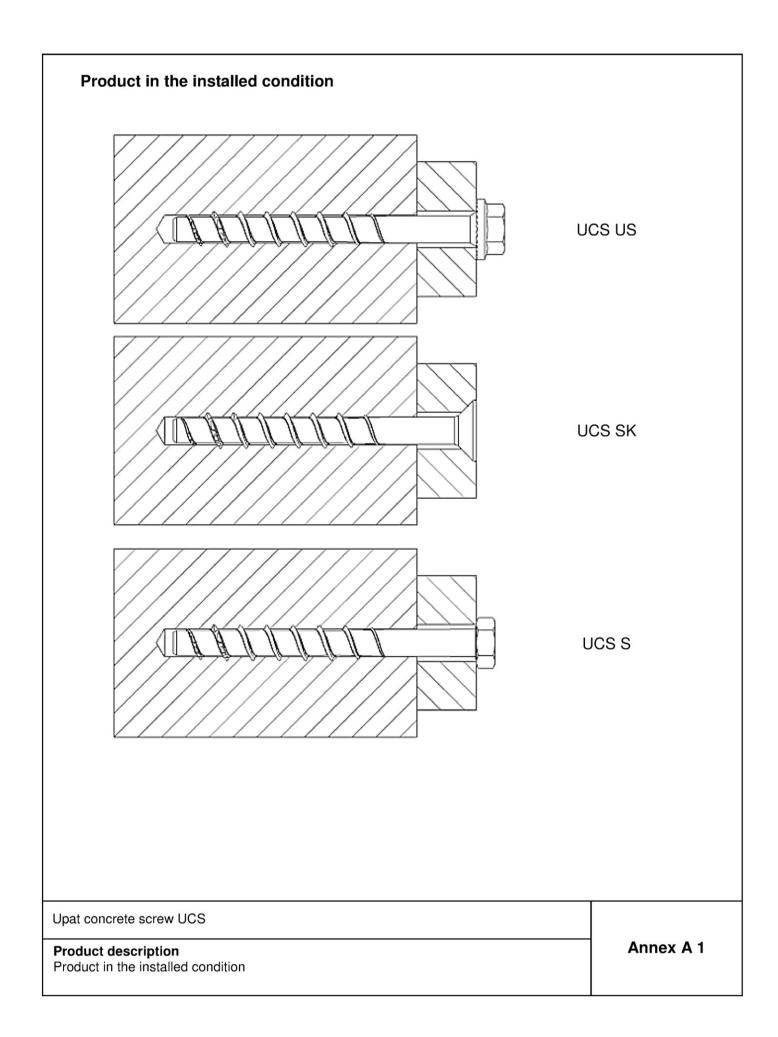
The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1
Displacements (static and quasi-static loading)	See Annex C 5
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 2, C 3 and C 5


3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 4

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330232-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

10 12,5 9,4 9,9 ened carbon galvar	12 14,5 11,3 11,7 steel; A _{5%} ≥ mized	
9,4 9,9 ened carbon	11,3 11,7 a steel; A _{5%} ≥ a nized	13,3 13,7 8%
9,9 ened carbon	11,7 steel; A _{5%} ≥ anized	13,7 8%
ened carbon	steel; A _{5%} ≥ onized	8%
	nized v	
galvar	U	
		W-3
L L		
	ption	ption

Upat concrete screw UCS Product description Material and screw types Annex A 2

XXX: screw length

Specifications of intended use

Table B1.1: Anchorages subject to

<u> </u>											
Size	,	8 10 12				14					
Nominal embedment depth [mm]	50	65	55	65	85	60	75	100	65	85	115
Static and quasi-static loads in cracked and uncracked concrete	✓										
Fire exposure											
Seismic performance category C1		_/			/			/			_/
Seismic performance category C2								_			•

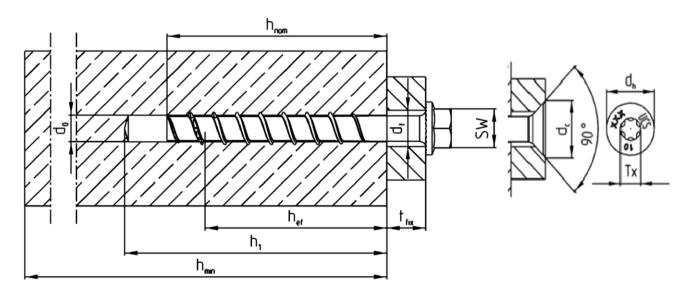
Base materials:

- Reinforced and unreinforced normal weight concrete according to EN 206:2013
- Strength classes C20/25 to C50/60 according to EN 206:2013
- · Non-cracked or cracked concrete: All sizes and all embedment depths

Use conditions (Environmental conditions):

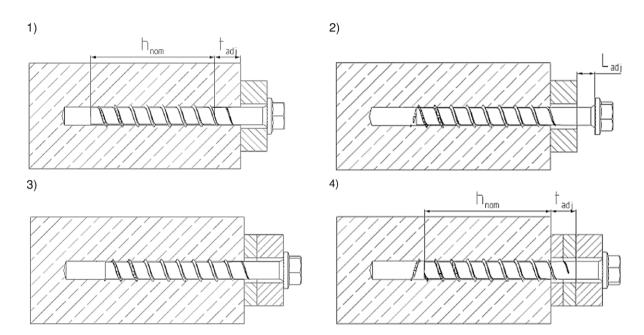
Structures subject to dry internal conditions.

Design:


- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The
 position of the screw is indicated on the design drawings
 - (e.g. position of the screw relative to reinforcement or to supports, etc.).
- Design of fastenings according to EN 1992-4:2018 and EOTA Technical Report TR 055

Installation:

- Hammer drilling or diamond drilling or hollow drilling according to Annex B4:
 All sizes and all embedment depths.
- Screw installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on site.
- In case of aborted hole: New hole must be drilled at a minimum distance of twice the depth of the aborted hole
 or closer, if the hole is filled with a high strength mortar and only if the hole is not in the direction of the oblique
 tensile or shear load.
- Adjustability according to Annex B3 for: All sizes and all embedment depths.
- Cleaning of drill hole is not necessary when using a hollow drill or:
 - If drilling vertically upwards
 - If drilling vertical downwards and the drill hole depth has been increased. It is recommended to increase the drill depth with additional 3 d₀.
- · After correct installation further turning of the screw head should not be possible
- The head of the screw must be fully engaged on the fixture and show no signs of damage.
- For Seismic Performance Category C2 applications: The gap between screw shaft and fixture must be filled with mortar; compressive strength ≥ 50 N/mm² (for example UPM 44 or UPM 55).


Upat concrete screw UCS	
Intended Use Specifications	Annex B 1

screw size								UCS					
Screw size				8 10 12		12			14				
Nominal embedment depth	h _{nom}	[mm]	50	65	55	65	85	60	75	100	65	85	115
Nominal drill hole diameter	d ₀	[mm]		3	10			12					
Cutting diameter of drill bits	d _{cut} ≤	[mm]	8,	45	10,45				12,50		14,50		
Cutting diameter of diamond drillers	d _{cut} ≤	[mm]	8,	8,10		10,30			12,30				
Clearance hole diameter	d _f	[mm]	10,6 -	10,6 – 12,0		12,8 – 14,0			1,8 – 16	5,0	16,9 – 18,0		
Wrench size (US,S)	SW	[mm]	13		15		17						
Tx size	Tx	-	40		50		-			-			
Countersunk head diameter	d _h	[mm]	1	18		21			-		-		
Countersunk diameter in fixture	d _c	[mm]	2	20 23			-			-			
Drill hole depth	h₁≥	[mm]	60	75	65	75	95	70	85	110	80	100	130
Drill hole depth (with adjustable setting process)	h₁≥	[mm]	70	85	75	85	105	80	95	120	90	110	140
Thickness of fixture	t _{fix} ≤	[mm]						L - h _{non}	1				
Longth of corow	L _{min} =	[mm]	50	65	55	65	85	60	75	100	65	85	115
Length of screw	L _{max} =	[mm]	400	415	405	415	435	410	425	450	415	435	465
Torque impact screw driver	T _{imp,max}	[Nm]	60	00					650				

Upat concrete screw UCS	
Intended Use Installation parameters UCS 8 - 14	Annex B 2

Adjustment

It is permissible to untighten the screw up to two times for adjustment purposes.

Therefor the screw may be untighten to a maximum of $L_{adj} = 20$ mm off the surface of the initial fixture. The total permissible thickness of shims added during the adjustment process is $t_{adj} = 10$ mm.

Table B3: Minimum thickness of concrete members, minimum spacing and edge distance

Carousaiza				UCS										
Screw size		8		10			12							
Nominal embedment depth	h _{nom}	[mm]	50	65	55	65	85	60	75	100	65	85	115	
Minimum thickness of concrete member	h _{min}	[mm]	100	120	100	120	140	110	130	150	120	140	180	
Minimum spacing	S _{min}	[mm]	3	35		40			50		60			
Minimum edge distance	C _{min}	[mm]	3	5	40			50						

Upat concrete screw UCS	
Intended Use Adjustment Minimum thickness of concrete members, minimum spacing and edge distance	Annex B 3

Installation instruction		
a) b) 3x do	Drill the hole using hammer drill, hollow drill or diamond core drill. Drill hole diameter d ₀ and drill hole depth h ₁ according to table Option a): Clean the drill hole Option b): Cleaning of drill hole is no using a hollow drill or a diamond drill If drilling vertically upwards or If drilling vertically downwards and depth has been increased. It is recincrease the drill hole depth additional installation with any torque impacts maximum mentioned torque moment to table B2.1). Alternatively, all other indicated torque moment are allowed spanner). The indicated torque moments are workers are therefore not decisi	ot necessary when all or: the drill hole commended to conal 3 times do. crew driver up to the cont (T _{imp,max} according or tools without an doing of the cont (e.g. ratchet ments for impact
1. 2. 2x	After installation a further turning of be possible. The head of the screw with the fixture and is not damaged Optional: It is permissible to adjust the screw Therefore the screw may be untighted maximum of Ladj = 20 mm off the surfixture. The total permissible thicknets	the screw must not must be in contact twice. ened to a rface of the initial
3. The strict max and the strict	added during the adjustment proces is t _{adj} = 10 mm. For seismic performance category C The gap between screw shaft and fix with mortar; mortar compressive street	C2 applications:
Upat concrete screw UCS Intended Use Installation instructions	(e. g. UPM 44 or UPM 55). As an aid the filling disc FFD is recommended	d for filling the gap,

Screw size									UCS						
					3	<u> </u>	10	$\overline{}$		12		14			
Nominal embedment depth h _{nom} [r			[mm]	50	65	55	65	85	60	75	100	65	85	115	
Steel failure	for tension load	and shea	r load												
Characteristi	c resistance	$N_{Rk,s}$	[kN]	3	5		55			76			103		
Partial factor	•	γMs	[-]						1,4						
Characteristic resistance $V_{\text{Rk,s}}$		[kN]	13,1	3,1 19,0 29,4 34,9 31,9 42,7 46,						,5	61,7				
Partial factor		γMs	[-]						1,5						
Factor for du		k_7	[-]						1,0						
Characteristi resistance	c bending	$M^0_{ Rk,s}$	[Nm]	5	1		95			165			269		
Pullout failu	ire														
Charact. resistance	cracked	$N_{Rk,p}$	[kN]	6	12	9	12	_1)	_1)	_1)	_1)	_1)	_1)	-1)	
in concrete C20/25	uncracked	$N_{Rk,p}$	[kN]						- ¹⁾						
	C25/30								1,12						
	C30/37		1,22												
Increasing	C35/45	Ψc	, , 						1,32						
factor concrete	C40/50		[-]						1,41						
C45/55	C45/55								1,48						
	C50/60			1,58											
Installation fa	actor	γinst	[-]	1,0											
Concrete co	ne failure and sp	litting fai	lure; Co	oncret	e pryo	ut failu	re								
Effective em	bedment depth	h_{ef}	[mm]	40	52	43	51	68	47	60	81	50	67	93	
Factor for cra	acked concrete	$k_{\text{cr},N}$	[-]						7,7						
Factor for un	cracked concrete	$k_{\text{ucr},N}$	[-]						11,0						
Characteristi	c edge distance	$\mathbf{C}_{\text{cr},N}$	[mm]	1,5 h _{ef}											
Characteristi		S _{cr,N}	[mm]	3 h _{ef}											
Charact. edg splitting	e distance for	C _{cr,sp}	[mm]	1,5 h _{ef}											
Charact. spa	cing for splitting	S _{cr,sp}	[mm]						3 h _{ef}						
Factor for pr		k ₈	[-]	1,0 2,0 1,0 2,0											
Installation fa		γinst	[-]						1,0						
Concrete ed															
	gth in concrete	I _f	[mm]	50	65	55	65	85	60	75	100	65	85	115	
	neter of screw	d _{nom}	[mm]	<u> </u>	В	<u> </u>	10			12		L	14		
Adjustment															
layers	ss of adjustment	t _{adj}	[mm]						10						
Max. numbe	r of adjustments	na	[-]	l					2						

Upat concrete screw UCS

Performances
Performance for static and quasi-static action

Annex C 1

T	~ ! . ! .! !		• • • • •
Table C2:	Characteristic values	for Seismic Performan	ce Category C1

Screw size				UCS							
OCIEW SIZE				8	10	12	14				
Nominal embed	lment depth	h _{nom}	[mm]	65	85	100	115				
Steel failure fo	r tension loa	d and shear	load C	21							
Characteristic re	ociatanaa	$N_{Rk,s,eq}$	[kN]	35	55	76	103				
Characteristic	esisiance	$V_{Rk,s,eq}$	[kN]	11,4	22,3	26,9	38,3				
Without filling o	f the annular	$lpha_{\sf gap}$	[-]		0	,5					
With filling of th gap ¹⁾	e annular	$lpha_{\sf gap}$	[-]		1	,0					
Pullout failure											
Characteristic re cracked concre		$N_{Rk,p,eq}$	[kN]	12	_2)						
Concrete cone	failure										
Effective embed	dment depth	h _{ef}	[mm]	52	68	81	93				
Concrete cone	Edge distance	C _{cr,N}	[mm]		1,5	5 h _{ef}					
failure	Spacing	S _{cr,N}	[mm]		3	h _{ef}					
Installation fact	or	γinst	[-]		1	,0					
Concrete pryo	ut failure										
Factor for pryou	ıt failure	k ₈	[-]		2	,0					
Concrete edge	failure										
Effective length	in concrete	l _f	[mm]	65	85	100	115				
Nominal diamet	er of screw	d _{nom}	[mm]	8	10 12 14						
1)			•			-					

Filling of the annular gap according to Annex B4 Pullout failure not decisive.

Upat concrete screw UCS	
Performances Characteristic values for Seismic Performance Category C1	Annex C 2

Characteristic values for Seismic Performance Category C2
Gap between screw shaft and fixture must be filled with mortar Table C3:

	Cap betwe	CII SCIEW S	nan ai	ia fixture must be	miled with mortal				
Screw size					U	CS			
Screw Size				8	10	12	14		
Nominal embed	lment depth	h _{nom}	[mm]	65	85	100	115		
Steel failure fo	r tension loa	d and shea	r load (C2					
Characteristic re	aciatanaa	$N_{Rk,s,eq}$	[kN]	35,0	55	76,0	103		
Characteristic n	esisiance	$V_{Rk,s,eq}$	[kN]	13,3	20,4	29,9	35,2		
With filling of the gap ¹⁾	e annular	$lpha_{\sf gap}$	[-]	1,0					
Pullout failure									
Characteristic re cracked concre		$N_{Rk,p,eq}$	[kN]	2,1 6,0		8,9	17,1		
Concrete cone	failure								
Effective embed	dment depth	h _{ef}	[mm]	52	68	81	93		
Concrete cone	Edge distance	C _{cr,N}	[mm]		1,5	h _{ef}			
failure	Spacing	S _{cr,N}	[mm]		3	h _{ef}			
Installation factor	or	γinst	[-]		1	,0			
Concrete pryo	ut failure								
Factor for pryou	ıt failure	k ₈	[-]		2	,0			
Concrete edge	failure								
Effective length	in concrete	I _f	[mm]	65	85	100	115		
Nominal diamet	er of screw	d _{nom}	[mm]	8 10 12 14					

Filling of the annular gap according to annex B4. Application without filling of the annular gap not allowed

Upat concrete screw UCS	
Performances Characteristic values for Seismic Performance Category C2	Annex C 3

Table C4: Characteristic values for resistance to fire¹⁾

Screw size										UCS					
						3		10			12			14	
Minimum embedment depth			h _{nom}	[mm]	50	65	55	65	85	60	75	100	65	85	115
Steel failure for	tension lo	ad and	shear Ioa	d (F _{Rk,s,}	fi = Ne	Rk,s,fi =	$V_{Rk,s,f}$	i)							
		R30	$F_{Rk,s,fi}$	[kN]	2,	33		3,45			4,62			6,46	
	US, S	R60	F _{Rk,s,fi}	[kN]	1,8	82		2,73			3,66			5,11	
	08, 8	R90	F _{Rk,s,fi}	[kN]	1,	30		2,00			2,69			3,75	
		R120	F _{Rk,s,fi}	[kN]	1,0	04		1,64			2,20			3,08	
		R30	F _{Rk,s,fi}	[kN]	2,	12		2,96			-			-	
Characteristic resistance for	SK, US TX,	R60	F _{Rk,s,fi}	[kN]	1,0	67		2,26			-			-	
head shape	S TX	R90	F _{Rk,s,fi}	[kN]	1,	21		1,56			-			-	
· ·		R120	F _{Rk,s,fi}	[kN]	0,99		1,21				-		-		
		R30	$M^0_{Rk,s,fi}$	[Nm]	2,62		4,92			7,83		12,89)	
All head	R60	$M^0_{Rk,s,fi}$	[Nm]	2,05			3,89		6,20		10,19		•		
	shapes	R90	$M^0_{Rk,s,fi}$	[Nm]	1,46			2,85		4,56				7,48	
		R120	$M^0_{Rk,s,fi}$	[Nm]	1,	17		2,34		3,73		6,14			
Pullout failure															
		R30	$N_{Rk,p,fi}$	[kN]											
Characteristic re	cictonos	R60	$N_{Rk,p,fi}$	[kN]	1,5	3,0	2,3	3,0	5,0	2,9	4,2	6,6	3,2	4,9	8,1
Characteristic re	sistance	R90	$N_{Rk,p,fi}$	[kN]											
		R120	$N_{Rk,p,fi}$	[kN]	1,2	2,4	1,8	2,4	4,0	2,3	3,3	5,2	2,5	3,9	6,5
Edge distance															
R30 to R120			C _{cr,fi}	[mm]						2 h _{ef}					
In case of fire at	tack from m	ore than	one side,	the mi	nimum	edge	dista	nce sh	all be	≥ 300) mm				
Spacing				I 1											
R30 to R120			S _{cr,fi}	[mm]						2 c _{cr,fi}					
Concrete pryou	it failure														
R30 to R120	R30 to R120														

The embedment depth has to be increased for wet concrete by at least 30 mm compared to the given value.

Upat concrete screw UCS	
Performances: Characteristic values for resistance to fire	Annex C 4

Table C5: Displacements due to tension loads (static)

Sorow sizo			UCS										
Screw size				3		10			12		14		
Nominal embedment depth	h_{nom}	[mm]	50	65	55	65	85	60	75	100	65	85	115
Tension load in cracked concrete	Ν	[kN]	2,9	5,7	4,3	5,7	9,6	5,5	8,0	12,5	6,1	9,4	15,3
Diaglacement	δ_{N0}	[mm]	0,5	0,9	0,7	0,7	0,8	0,7	0,9	0,8	0,8	1,0	0,8
Displacement	δ_{N_∞}	[mm]	1,3	1,0	0,7	0,7	0,8	1,3	0,9	0,8	1,1	1,0	1,1
Tension load in non - cracked concrete	N	[kN]	7,9	12,0	6,8	8,8	13,5	7,7	11,0	17,4	8,5	13,2	21,6
Disalessant	δ_{N0}	[mm]	0,9	1,4	0,9	0,9	1,4	0,9	1,1	1,4	1,0	1,3	1,1
Displacement	δ_{N_∞}	[mm]	1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,1	1,3	1,1

Table C6: Displacements due to shear loads (static)

Screw size			UCS										
			·	В		10			12			14	
Nominal embedment depth	h _{nom}	[mm]	50	65	55	65	85	60	75	100	65	85	115
Shear load in cracked and non-cracked concrete	٧	[kN]	6,2	9,0	14,0	14,0	16,6	15,9	15,9	21,2	23,0	23,0	30,5
Dienlagement	δ_{V0}	[mm]	1,4	1,4	3,2	3,2	3,2	2,5	2,5	3,4	2,8	2,8	5,4
Displacement	$\delta_{V\infty}$	[mm]	2,0	2,1	4,9	4,9	4,9	3,8	3,8	5,1	4,2	4,2	8,1

Table C7: Displacements due to tension loads (Seismic Performance Category C2)

Sorow sizo			UCS							
Screw size			8	10	12	14				
Nominal embedment depth	h _{nom}	[mm]	65	85	100	115				
Displacement DLS	$\delta_{N,eq(DLS)}$	[mm]	0,5	0,8	0,9	1,3				
Displacement ULS	$\delta_{\text{N,eq (ULS)}}$	[mm]	1,7	2,8	2,7	5,0				

Table C8: Displacements due to shear loads (Seismic Performance Category C2)

Screw size			UCS							
			8	10	12	14				
Nominal embedment depth	h _{nom}	[mm]	65	85	100	115				
Displacement DLS	$\delta_{V,eqDLS)}$	[mm]	1,6	2,7	3,1	4,1				
Displacement ULS	$\delta_{\text{V,eq (ULS)}}$	[mm]	3,9	7,1	5,3	8,7				

Upat concrete screw UCS	
Performances: Displacements under tension and shear loads	Annex C 5