

Einfach. Sicher.

DECLARATION OF PERFORMANCE

DoP: 0082

for Upat Anchor Bolt MAX (Metal anchors for use in concrete (heavy-duty type)) - EN

- 1. Unique identification code of the product-type: DoP: 0082
- 2. Intended use/es: Post-installed fastening in cracked or uncracked concrete, see appendix, especially Annexes B 1 to B 6
- 3. Manufacturer: Upat Vertriebs GmbH, Bebelstraße 11, 79108 Freiburg im Breisgau, Germany
- 4. Authorised representative: --
- 5. System/s of AVCP: 1
- 6. European Assessment Document: EAD 330232-00-0601

European Technical Assessment: ETA-10/0170; 2018-11-26

Technical Assessment Body: DIBt

Notified body/ies: 1343 - MPA Darmstadt

7. Declared performance/s:

Mechanical resistance and stability (BWR 1)

- Characteristic resistance to tension load (static and quasi-static loading): See appendix, especially Annex C1
- Characteristic resistance to shear load (static and quasi-static loading): See appendix, especially Annex C 2
- Displacements (static and quasi-static loading): See appendix, especially Annex C 5
- Characteristic resistance and displacements for seismic performance categories C1 and C2: See appendix, especially Annexes C 4 and C 5

Safety in case of fire (BWR 2)

- Reaction to fire: Anchorages satisfy requirements for Class A 1
- Characteristic resistance under fire exposure: See appendix, especially Annex C 3

8. Appropriate Technical Documentation and/or Specific Technical Documentation: ---

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Andreas Bucher, Dipl.-Ing.

1.V. A. BULL

Wolfgang Hengesbach, Dipl.-Ing., Dipl.-Wirtsch.-Ing.

i.V. W. Mglal

Tumlingen, 2018-12-03

- This DoP has been prepared in different languages. In case there is a dispute on the interpretation the english version shall always prevail.
- The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Specific Part

1 Technical description of the product

The Upat Anchor bolt MAX is an anchor made of galvanised steel (MAX) or made of stainless steel (MAX A4) or high corrosion resistant steel (MAX C) which is placed into a drilled hole and anchored by torque-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

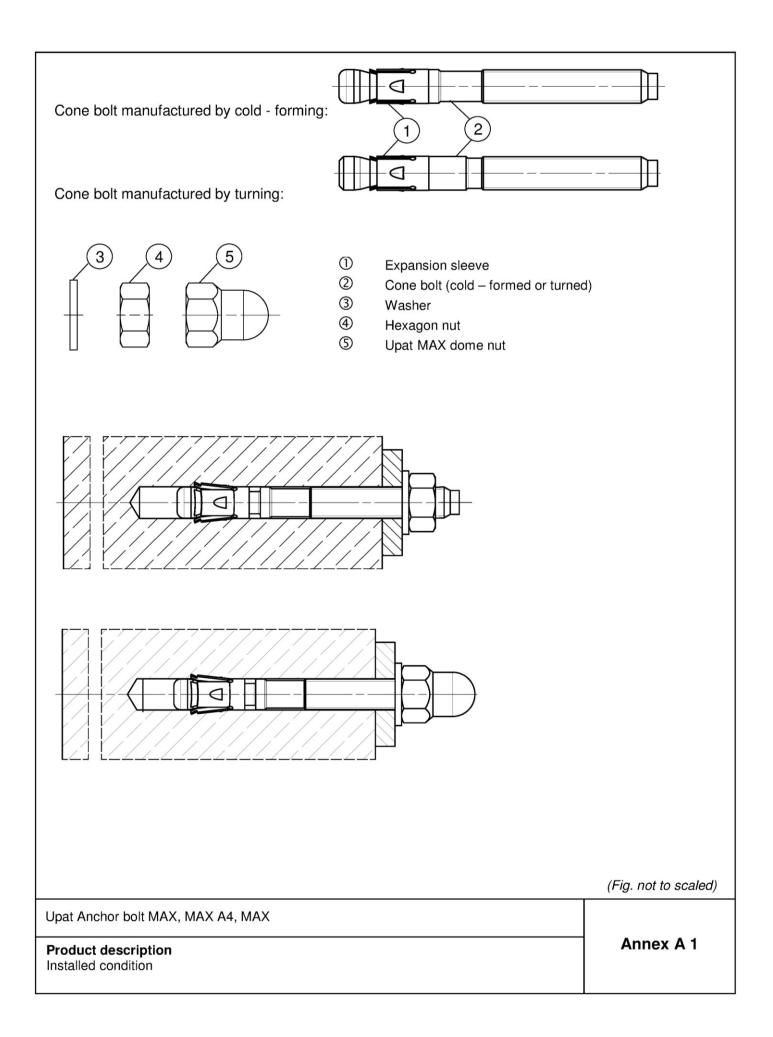
The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

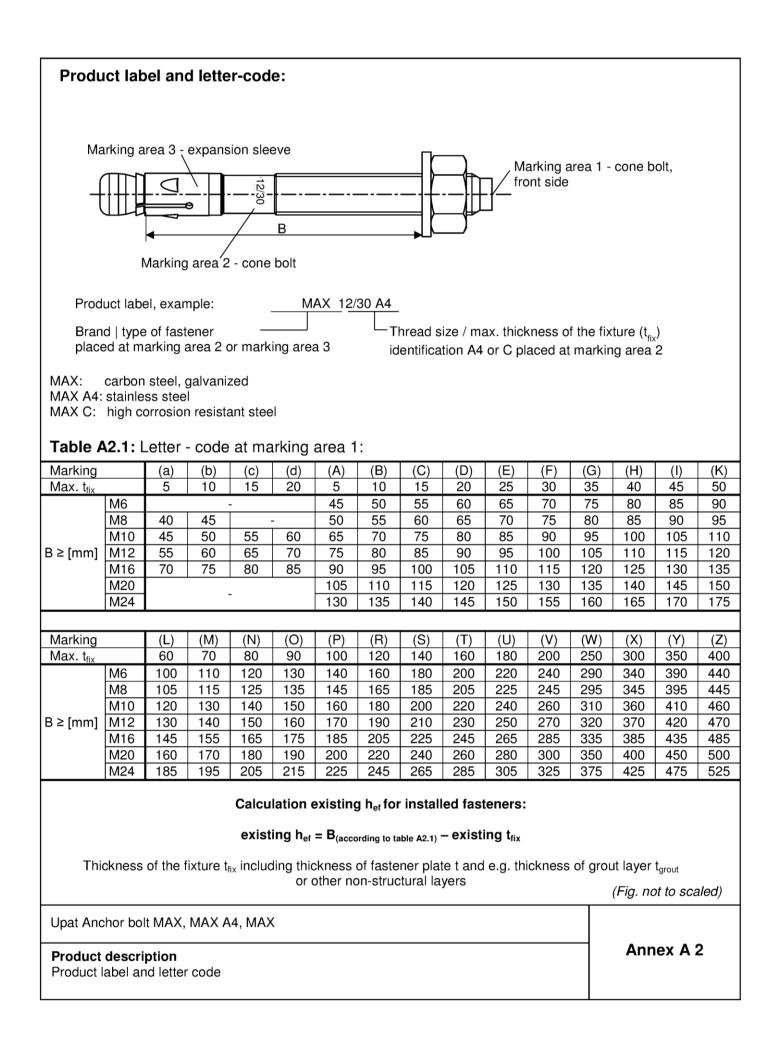
The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

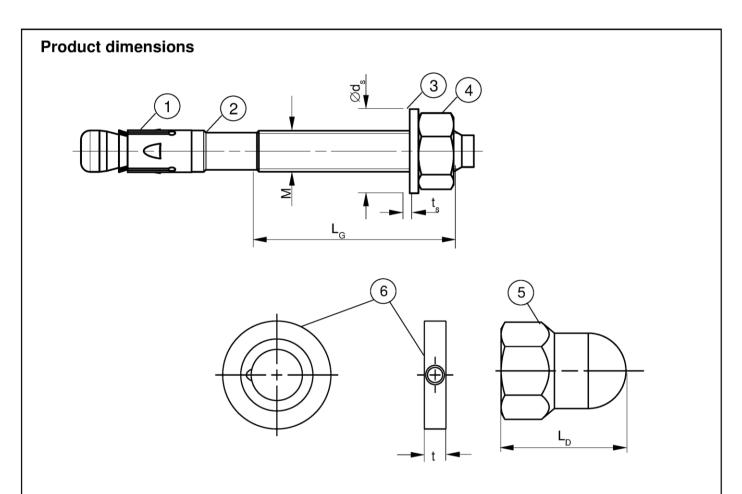
3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 2
Displacements (static and quasi-static loading)	See Annex C 5
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 4 and C 5


3.2 Safety in case of fire (BWR 2)


Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	see Annex C 3


4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD Nr. 330232-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

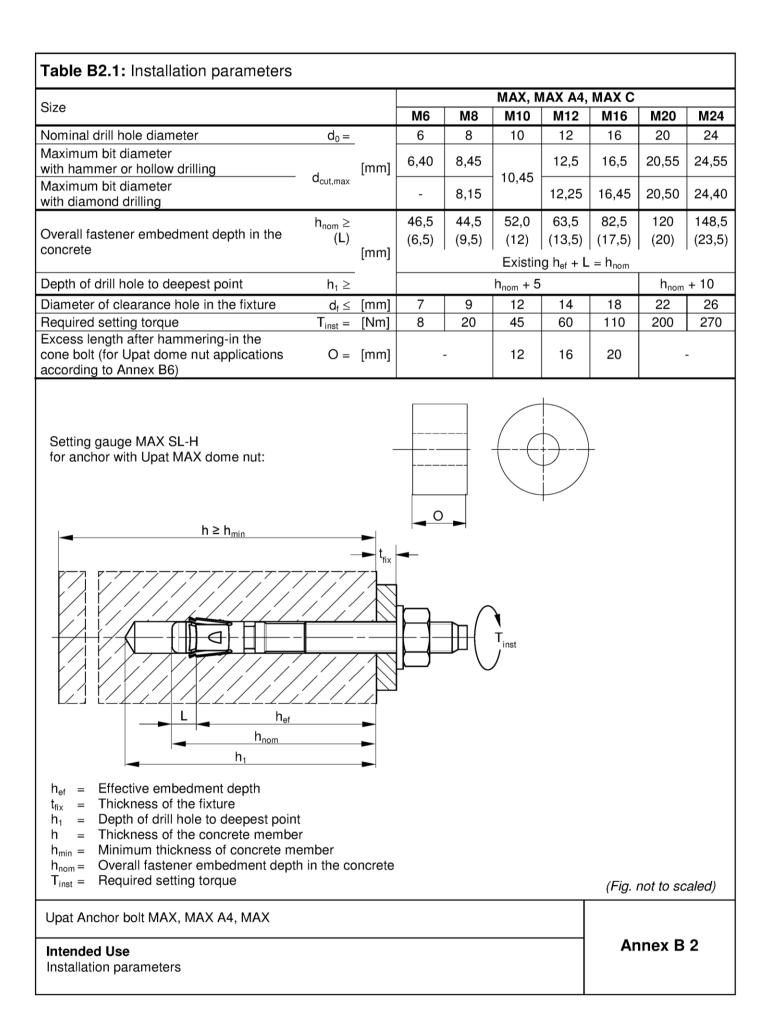


Table A3.1: Dimensions [mm]

Part	Designation					MAX,	MAX A4,	МАХ С		
Fan	Designation			M6	M8	M10	M12	M16	M20	M24
1	Expansion sleeve	Sheet thickne	SS	0,8	1,3	1,4	1,6	2,	4	3,0
2	Cone bolt	Thread	size M	6	8	10	12	16	20	24
2		L _G		10	19	26	31	40	50	57
3	Washer	ts	≥	1	,4	1,8	2,3	2,		3,7
5	VVasilei	$\emptyset d_s$		11	15	19	23	29	36	43
4 & 5	Hexagon nut / Upat MAX	Wrench	n size	10	13	17	19	24	30	36
5	dome nut	L _D	≥		-	22	27	33		-
6	Upat filling disc FFD	t	=		(6		7	8	10
									(Fig. not	to scaled)
Upat /	Anchor bolt MAX,	MAX A4	, MAX							
	uct description								Anne	x A 3

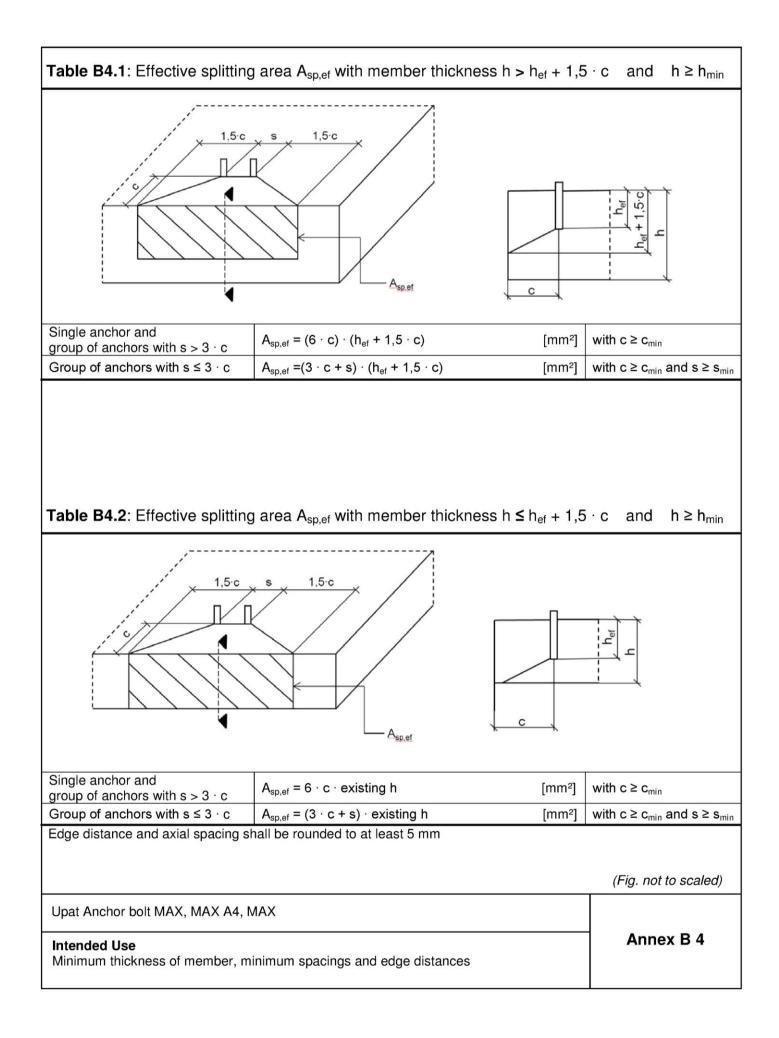
Specifica	tions o	of intend	led use				
Anchorages subject to:							
Size	M6	M8	MAX, M10	MAX A4, I M12	MAX C M16	M20	M24
Static and quasi-static loads		ine					
Cracked and uncracked concrete				1			
Fire exposure		1					
Seismic performance C1 category C2 ¹⁾	-	-		v			_
¹⁾ MAX C: Only valid for cold-formed version (accord					/		-
 Base materials: Compacted reinforced and unreinforced normal according to EN 206: 2013 Strength classes C20/25 to C50/60 according to Use conditions (Environmental conditions): Structures subject to dry internal conditions (MA Structures subject to external atmospheric export permanently damp internal condition, if no partice (MAX A4, MAX C) Structures subject to external atmospheric export aggressive conditions exist (MAX C) Structures subject to external atmospheric export aggressive conditions exist (MAX C) Note: Particular aggressive conditions are e.g. permanent chloride atmosphere of indoor swimming pools or atm (e.g. in desulphurization plants or road tunnels where Design: Anchorages are to be designed under the responsition of the anchor is indicated on the design to supports, etc.) Design of fastenings according to EN 1992-4: 20 For effective embedment depth h_{ef} < 40 mm and (e.g. light-weight suspended ceilings with international of the anchor is indicated on the design of (e.g. light-weight suspended ceilings with international description of the anchor is indicated ceilings with international description of the anchor is indicated on the design of (e.g. light-weight suspended ceilings with international description of the anchor is indicated ceilings with international description of the anchor is indicated on the design of (e.g. light-weight suspended ceilings with international description of the anchor is and drawings are to indicate description of the anchor is indicated on the design of (e.g. light-weight suspended ceilings with international description descriptional descriptional descriptional description descri	p EN 206 X, MAX psure (include a source (include a source and a source and a source and a source a sourc	2013 A4, MAX (luding inde ressive co permanee ting immers with extrem naterials are of an engir ared taking s (e.g. pos Technical 0 mm and	C) ustrial and onditions e ntly damp sion in sear ie chemica e used) neer expe g account sition of th Reoprt Tf < 100 mr	d marine e exist internal c water or the I pollution rienced in of the load e anchor R 055 m only sta	environme condition, i e splash zo anchorag ds to be a relative to	nt) and to f other pa one of seav ges and co nchored. reinforce	rticular vater, oncrete The ment or
Upat Anchor bolt MAX, MAX A4, MAX							
Intended Lise						Annex I	31

Specifications

Size					МАХ	, MAX A4	, MAX C		
Size			M6	M8	M10	M12	M16	M20	M24
Minimum edge distance									
Uncracked concrete	C .		45	40	45	55	65	95	135
Cracked concrete	C _{min}		45	40	45	55	05	85	100
Minimum spacing	S _{min}	[mm]			acco	rding to A	nnex B4		
Minimum thickness of concrete member	h _{min}			80		100	140	160	200
Thickness of concrete member	h ≥			max. {h _{mi}	_n ; h ₁ ¹⁾ + 3	0}	max. {	$h_{min}; h_1^{(1)} +$	- 2 · d _o }
Minimum spacing									
Uncracked concrete	6		35	40	40	50	65	95	100
Cracked concrete	— S _{min}		35	35	40	50	05	90	100
Minimum edge distance	C _{min}	[mm] [acco	rding to A	nnex B4		
Minimum thickness of concrete member	h _{min}			80		100	140	160	200
Thickness of concrete member	h ≥			max. {h _{mi}	_n ; h ₁ ¹⁾ + 3	0}	max. {	$h_{min}; h_1^{1)} +$	- 2 · d _o }
Minimal splitting area						_			
Uncracked concrete	^	[.1000	5,1	18	37	54	67	100	117,5
Cracked concrete	— A _{sp,req}	mm ²]	1,5	12	27	40	50	77	87,5

¹⁾ h₁ according to Annex B2

Splitting failure applied for minimum edge distance and spacing in dependence of the hef


For the calculation of minimum spacing and minimum edge distance of anchors in combination with different embedment depths and thicknesses of concrete members the following equation shall be fulfilled:

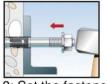
 $A_{sp,req} < A_{sp,ef}$

 $A_{sp,req}$ = required splitting area $A_{sp,ef}$ = effective splitting area (according to Annex B4)

Upat Anchor bolt MAX, MAX A4, MAX

Annex B 3

Installation instructions:

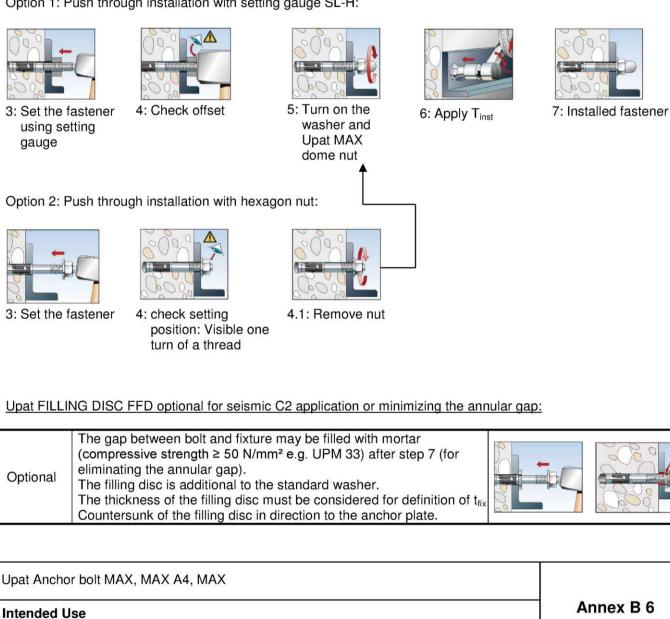

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person
 responsible for technical matters of the site
- Use of the anchor only as supplied by the manufacturer without exchanging the components of the anchor Exception: Upat MAX dome nut.
- Hammer, hollow or diamond drilling according to Annex B5
- Drill hole created perpendicular +/- 5° to concrete surface, positioning without damaging the reinforcement
- In case of aborted hole: new drilling at a minimum distance twice the depth of the aborted drill hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application

Installation instructions: Drilling and cleaning the hole

		Types of drills and cleaning		
Hammer drill	64400000000000000000000000000000000000	1: Drill the hole	2: Clean the hole	
Hollow drill	ī	1: Drill the hole with automatic cleaning		-
Diamond drill, for non seismic applications only and ≥ drill Ø 8		1: Drill the hole	2: Clean the hole	
Ø 8		1: Drill the hole	2: Clean the hole	
Upat Anchor bolt Intended Use	: MAX, MAX A4, MA	X		Annex B 5

HEXAGON NUT:

3: Set the fastener


4: Apply Tinst

5: Installed fastener

Upat MAX DOME NUT:

Option 1: Push through installation with setting gauge SL-H:

Installation instructions

Annex B 6

$ \begin{array}{ c c c c c c } \hline M6 & M8 & M10 & M12 & M16 & M20 & M16 & M10 $							MAX, N	IAX A4,	MAX C	;	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Size			M6	M	3	M10	M12	M16	M20	M24
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Steel failure										
Pullout failure Effective embedment depth for calculation h_{ef} [mm] 40 $35 - 45$ $40 - 50 - 85$ 100 11 Characteristic resistance in cracked concrete C20/25 $1,5$ $5,5$ 8 13 20 -2^{2} Increasing factors for N _{Fik,p} for cracked and uncracked concrete V_{c} $C25/30$ $1,12$ -2^{2} Increasing factors for N _{Fik,p} for cracked concrete V_{c} $C25/30$ $1,41$ -2^{2} Installation factor γ_{inst} [-] $1,0$ $1,41$ -2^{2} Concrete cone and splitting failure $C_{45/55}$ $1,50$ $C_{50/60$ $1,41$ -2^{2} Factor for uncracked concrete $k_1 = k_{uor,N}$ [-] $1,0$ 0 0 Characteristic spacing $S_{Gr,N}$ [mm] $3 \cdot h_{ef}$ -2^{2} -2^{2} Spacing $S_{Gr,N}$ [mm] 0 $1,5 \cdot h_{ef}$ -2^{2} -2^{2} Gade distance for h = 100 $S_{Gr,N}$ [mm] 0 $2 \cdot h_{ef}$ -2^{2} -2^{2} Edge distance for h = 100 $C_{cr,sp}$	Characteristic resistance					-					176,7 183,6
Pullout failure Effective embedment depth for calculation h_{ef} [mm] 40 $35 - 45$ $40 - 50 - 85$ 100 11 Characteristic resistance in cracked concrete C20/25 $1,5$ $5,5$ 8 13 20 -2^{2} Increasing factors for N _{Fik,p} for cracked and uncracked concrete V_{c} $C25/30$ $1,12$ -2^{2} Increasing factors for N _{Fik,p} for cracked concrete V_{c} $C25/30$ $1,41$ -2^{2} Installation factor γ_{inst} [-] $1,0$ $1,41$ -2^{2} Concrete cone and splitting failure $C_{45/55}$ $1,50$ $C_{50/60$ $1,41$ -2^{2} Factor for uncracked concrete $k_1 = k_{uor,N}$ [-] $1,0$ 0 0 Characteristic spacing $S_{Gr,N}$ [mm] $3 \cdot h_{ef}$ -2^{2} -2^{2} Spacing $S_{Gr,N}$ [mm] 0 $1,5 \cdot h_{ef}$ -2^{2} -2^{2} Gade distance for h = 100 $S_{Gr,N}$ [mm] 0 $2 \cdot h_{ef}$ -2^{2} -2^{2} Edge distance for h = 100 $C_{cr,sp}$	Partial factor for steel failure	γ _{Ms} ¹⁾	[-]			-		1,5	-		
$ \begin{array}{c c c c c c c } \hline \mbox{N}_{ef} \ [mm] & 40 & < 45 & 45 & 60 & 70 & 85 & 100 & 10 \\ \hline Characteristic resistance in cracked concrete C20/25 & 1,5 & 1,5 & 5,5 & 8 & 13 & 20 \\ \hline \mbox{Characteristic resistance in uncracked concrete C20/25 & 1,5 & 1,4 & 20 & 22 & & & & & & & & & & & & & & &$	Pullout failure	,									
$ \frac{\operatorname{cracked concrete C20/25}{\operatorname{Characteristic resistance in}}{\operatorname{uncracked concrete C20/25}} N_{\text{Rk,p}} [kN] = \begin{bmatrix} 1,5 & 5,5 & 8 & 13 & 20 \\ \hline 10,5 & 14 & 20 & 22 \\ \hline 10,5 & 14 & 20 & 112 \\ \hline 1,50 & 14 & 20 & 112 \\ \hline 1,50 & 14 & 20 & 112 \\ \hline 10,5 & 14 & 20 & 20 \\ \hline 10,5 & 12 & 20 & 112 \\ \hline 10,5 & 12 & 20 & 112 \\ \hline 1$		h _{ef}	[mm]	40		45				100	125
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		NI		1,5	5,5	8	13	20		2)	
Increasing factors for N _{Rk,p} for cracked and uncracked concrete $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		INRk,p		10,5	14	ŀ	20	22		-	
Increasing factors for N _{Rk,p} for cracked and uncracked concrete $ \begin{array}{c} $		-						-			
cracked and uncracked concrete $\begin{array}{c} \psi_{c} \hline C40/50 & 1,41 \\ \hline C45/55 & 1,50 \\ \hline C50/60 & 1,58 \\ \hline \\ Installation factor & \gamma_{inst} [-] & 1,0 \\ \hline \\ \hline \\ \hline \\ Factor for uncracked concrete & k_{1} = k_{ucr,N} \\ Factor for uncracked concrete & k_{1} = k_{ucr,N} \\ \hline \\ Factor for cracked concrete & k_{1} = k_{ucr,N} \\ \hline \\ Factor for cracked concrete & k_{1} = k_{ucr,N} \\ \hline \\ \hline \\ Characteristic spacing & s_{cr,N} \\ \hline \\ Characteristic edge distance & c_{cr,N} \\ \hline \\ \hline \\ Edge distance for h = 80 \\ \hline \\ Edge distance for h = 100 \\ \hline \\ Edge distance for h = 140 \\ \hline \\ Edge distance for h = 160 \\ \hline \\ Edge distance for h = 160 \\ \hline \\ Edge distance for h = 200 \\ \hline \\$		-									
$\begin{tabular}{ c c c c c c }\hline \hline C45/55 & 1,50 & 1,58 & 1,50 & 1,58 & 1,50 & 1,58 & 1,50 & 1,58 & 1,50 & 1,58 & 1,50 & 1,58 & 1,50 & 1,58 & 1,50 & 1,58 & 1,50 & 1,58 & 1,50 & 1,58 & 1,50 & 1,58 & 1,50 & 1,58 & 1,50 & 1,58 & 1,50 &$	Increasing factors for $N_{Rk,p}$ for)//	C35/45					-			
$\hline \hline C50/60 & 1,58 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	cracked and uncracked concrete	ΨC -						-			
Installation factor γ_{inst} [-] 1,0 Concrete cone and splitting failure Factor for uncracked concrete $k_1 = k_{\text{ucr,N}}$ [-] 11,0 Factor for cracked concrete $k_1 = k_{\text{urr,N}}$ [-] 7,7 Characteristic spacing $s_{\text{cr,N}}$ [mm] Characteristic edge distance $c_{\text{cr,N}}$ [mm] Spacing $s_{\text{cr,sp}}$ Edge distance for h = 80 Edge distance for h = 100 Edge distance for h = 120 Edge distance for h = 140 Edge distance for h = 160 Edge distance for h = 200 1) In absence of other national regulations		-						-			
Index 11 and 11											
Factor for uncracked concrete $k_1 = k_{uor,N}$ $k_1 = k_{or,N}$ [-]11,0Factor for cracked concrete $k_1 = k_{uor,N}$ $k_1 = k_{or,N}$ [-]7,7Characteristic spacing $S_{or,N}$ $C_{aracteristic edge distance[mm]3 \cdot h_{ef}Characteristic edge distanceC_{or,N}C_{r,Sp}[mm]Edge distance for h = 802 \cdot c_{or,Sp}Edge distance for h = 100c_{cr,Sp}Edge distance for h = 120c_{cr,Sp}Edge distance for h = 140c_{cr,Sp}Edge distance for h = 1602 \cdot h_{ef}Edge distance for h = 2002 \cdot h_{ef}1) absence of other national regulations$		γinst	[-]					1,0			
Factor for cracked concrete $k_1 = k_{cr,N}$ [-]7,7Characteristic spacing $s_{cr,N}$ [mm] $3 \cdot h_{ef}$ Characteristic edge distance $c_{cr,N}$ [mm] $1,5 \cdot h_{ef}$ Spacing $s_{cr,sp}$ $2 \cdot c_{cr,sp}$ Edge distance for h = 80 $s_{cr,sp}$ $2 \cdot h_{ef}$ Edge distance for h = 100 $c_{cr,sp}$ $2 \cdot h_{ef}$ $-$ Edge distance for h = 120 $c_{cr,sp}$ $2 \cdot h_{ef}$ $-$ Edge distance for h = 140 $c_{cr,sp}$ $2 \cdot h_{ef}$ $-$ Edge distance for h = 160 $c_{cr,sp}$ $1,9 \cdot h_{ef}$ $2 \cdot h_{ef}$ $-$ Edge distance for h = 200 1 in absence of other national regulations $ 2 \cdot h_{ef}$ $2 \cdot h_{ef}$ $-$	· · · ·			1				44.0			
Pactor for cracked concrete $k_1 = k_{cr,N}$ 7,7 Characteristic spacing $S_{cr,N}$ [mm] $3 \cdot h_{ef}$ Characteristic edge distance $C_{cr,N}$ [mm] $1,5 \cdot h_{ef}$ Spacing $S_{cr,Sp}$ $2 \cdot c_{cr,Sp}$ Edge distance for h = 80 $2,4 \cdot h_{ef}$ $2 \cdot h_{ef}$ $-$ Edge distance for h = 100 $C_{cr,Sp}$ $2 \cdot h_{ef}$ $ -$ Edge distance for h = 120 $C_{cr,Sp}$ 40 $2 \cdot h_{ef}$ $2 \cdot h_{ef}$ $-$ Edge distance for h = 140 $C_{cr,Sp}$ 40 $2 \cdot h_{ef}$ $2 \cdot h_{ef}$ $-$ Edge distance for h = 160 200 $1,9 \cdot h_{ef}$ $2 \cdot h_{ef}$ $2 \cdot h_{ef}$ $-$ In absence of other national regulations 100 $1,9 \cdot h_{ef}$ $2 \cdot h_{ef}$ <			[-]								
Characteristic edge distance $C_{cr,N}$ [mm] $1,5 \cdot h_{ef}$ Spacing $s_{cr,sp}$ $2 \cdot c_{cr,sp}$ Edge distance for h = 80 $2,4 \cdot h_{ef}$ $2 \cdot h_{ef}$ Edge distance for h = 100 $c_{cr,sp}$ $2,4 \cdot h_{ef}$ $2 \cdot h_{ef}$ Edge distance for h = 120 $c_{cr,sp}$ $2 \cdot h_{ef}$ $-$ Edge distance for h = 140 $c_{cr,sp}$ $2 \cdot h_{ef}$ $-$ Edge distance for h = 160 $2 \cdot h_{ef}$ $1,5 \cdot h_{ef}$ $2 \cdot h_{ef}$ Edge distance for h = 200 $1,5 \cdot h_{ef}$ $2 \cdot h_{ef}$ $-$ 1) n absence of other national regulations $1,1,1,2,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,$								-			
Spacing $s_{cr,sp}$ $2 \cdot c_{cr,sp}$ Edge distance for h = 80Edge distance for h = 100 $2 \cdot h_{ef}$ -Edge distance for h = 120 $c_{cr,sp}$ 40 $2 \cdot h_{ef}$ -Edge distance for h = 140 $c_{cr,sp}$ $2 \cdot h_{ef}$ -Edge distance for h = 160 $2 \cdot h_{ef}$ $1,9 \cdot h_{ef}$ $2 \cdot h_{ef}$ Edge distance for h = 200 $1)$ In absence of other national regulations $2 \cdot h_{ef}$ $2 \cdot h_{ef}$ $2 \cdot h_{ef}$	· · · · · · · · · · · · · · · · · · ·		[mm]								
$ \begin{array}{c} \mbox{Edge distance for h = 80} \\ \mbox{Edge distance for h = 100} \\ \mbox{Edge distance for h = 120} \\ \mbox{Edge distance for h = 140} \\ \mbox{Edge distance for h = 140} \\ \mbox{Edge distance for h = 160} \\ \mbox{Edge distance for h = 200} \end{array} \end{array} \begin{array}{c} \mbox{mm} \mbox{mm} \mbox{nm} n$											
$ \begin{array}{c} Edge \ distance \ for \ h = 100 \\ Edge \ distance \ for \ h = 120 \\ Edge \ distance \ for \ h = 140 \\ Edge \ distance \ for \ h = 140 \\ Edge \ distance \ for \ h = 160 \\ Edge \ distance \ for \ h = 200 \\ 1,9 \cdot h_{ef} \ 1,9 \cdot h_{ef} \ 2 \cdot h_{ef} \ 2 \cdot h_{ef} \ - 1,9 \cdot h_{ef} \ 2 \cdot h_{ef} \ 2 \cdot h_{ef} \ - 1,9 \cdot h_{ef} \ 2 \cdot h_{ef} \ 2 \cdot h_{ef} \ - 1,9 \cdot h_{ef} \ 2 \cdot h_{ef} \ 2 \cdot h_{ef} \ - 1,9 \cdot h_{ef} \ 2 \cdot h_{ef} \ 2 \cdot h_{ef} \ - 1,9 \cdot h_{ef} \ 2 \cdot h_{ef} \ - 1,9 \cdot$	· ·	S _{cr,sp}			0.4	L.	0.1	2 · C _{cr,sp}			
Edge distance for h = 120 [mm] 40 $2 \cdot h_{ef}$ $2 \cdot h_{ef}$ $2 \cdot h_{ef}$ Edge distance for h = 140 $c_{cr,sp}$ 40 $2 \cdot h_{ef}$ $1,9 \cdot h_{ef}$ $2 \cdot h_{ef}$ $-$ Edge distance for h = 160 $2 \cdot h_{ef}$ $1,5 \cdot h_{ef}$ $2 \cdot h_{e$	-	_			2,4	n _{ef}		-			
Edge distance for h = 140 $C_{cr,sp}$ 40 $2 \cdot h_{ef}$ $1,9 \cdot h_{ef}$ $2 \cdot h_{ef}$	-	_					2,4·h _{ef}			-	
Edge distance for h = 140 $2 \cdot h_{ef}$ $1, 9 \cdot h_{ef}$ $1, 5 \cdot h_{ef}$ $2 \cdot h_$	·	- C _{cr sp}	[mm]	40				2,1 · h _{ef}			
Edge distance for $h = 200$ ¹⁾ In absence of other national regulations	<u> </u>	_			2∙h	ef	1.9·h _{ef}			ļ	-
¹⁾ In absence of other national regulations	·	_					-,	1,5∙h _{ef}	2∙h _{ef}	2.4 hof	-
 ¹⁾ In absence of other national regulations ²⁾ Pullout failure not relevant 	0									_,	2,2∙h _€
	 In absence of other national regulat Pullout failure not relevant 	ions									

Upat Anchor bolt MAX, MAX A4, MAX

Characteristic values of resistance under tension loads

					1	MAX. M	ΔΧ ΔΔ	MAX C	2	
Size				M6	M8	M10	M12	M16	M20	M24
Steel failure without lever arm										
Characteristic resistance —	IAX IAX A4/C	$V^0_{Rk,s}$	[kN]	5,9 8,8	13,6 16,8	21,4 26,5	30,6 38,3	55,0 69,8	81,4 106,3	110,1 148,5
Partial factor for steel failure		γ _{Ms} 1)		0,0	,.	20,0	1,25	00,0	,.	
Ductility factor		k_7	[-]				1,0			
Steel failure with lever arm and C	Concrete pryou	t failure	e				,			
Effective embedment depth for cal	culation	h _{ef}	[mm]	40	45	60	70	85	100	125
Characteristic bending resistance	MAX MAX A4/C	M ⁰ _{Rk,s}	[Nm]	11,4 10,7	26 29	52 59	92 100	233 256	513 519	865 898
Factor for pryout failure		k ₈	[-]	2,6	2,8		,2	3,0	2,6	2,4
Effective embedment depth for cal	culation		[mm]		35 - < 45	40 - < 60	50 - < 70	65 - < 85		
Characteristic handling resists	MAX	N 4 ⁰	[N]1	-	20	44	92	184		-
Characteristic bending resistance	MAX A4/C	${\sf M}^0{}_{\sf Rk,s}$	[INM]		21	45	100	193		
Factor for pryout failure		k ₈	[-]		2,5	2,6	3,1	3,2		
Partial factor for steel failure		γ _{Ms} 1)	[-]				1,25			
Ductility factor Concrete edge failure		k ₇					1,0			
Effective anchor length		$I_{f} =$	[mm]				h _{ef}			
Outside diameter of a fastener		d _{nom}	[]	6	8	10	12	16	20	24
Jpat Anchor bolt MAX, MAX A4, M	AX									

Cizo.								MAX, MA	X A4, MA	X C		
Size						M6	M8	M10	M12	M16	M20	M24
				h _{ef} ≥	[mm]	40	35 / 45	40 / 60	50 / 70	65 / 85	100	125
Charac	toristic			R30		$0,6^{1}/0,9^{2}$	1,4	2,8	5,0	9,4	14,7	21,
resist		N _{Rk}		R60		$0,4^{1}/0,9^{2}$		2,3	4,1	7,7	12,0	17,3
steel f		••••		R90		$0,3^{1}/0,9^{2}$		1,9	3,2	6,0	9,4	13,
				120		0,2 ¹⁾ / 0,7 ²⁾	0,8	1,6	2,8	5,2	8,1	11,6
Charac		N		30 - 90	[L_N]		7,7 ·	$h_{ef}^{1,5} \cdot (20)$) ^{0,5} · h _{ef} / 2	200 / 1000		
resist Concrete c		IN _{Rk}	,0,11	120	[kN]		77 · h	$(1,5) \cdot (20)^{0,5}$	⁵ · h / 200	0 / 1000 · 0	8	
oonerete e				R30			0,9 / 2,0	(20)	Tief / 20	071000 0	,0	
Charac				R60		0,4		2,2 / 3,3	3.0/5.0	4,5 / 6,8	8,6	12,0
resist		N _{Rk}		R90		0,1	0,5 / 2,0	2,2 / 0,0	0,070,0	1,070,0	0,0	,
pullout	failure			120		0,3		1.7 / 2.6	2,4 / 4,0	3,6 / 5,4	6,9	9,6
¹⁾ MAX gvz ²⁾ MAX A4 Table C3.	/ C	acteris	tic val	ues	of sh	ear resista	nce unde	er fire ex	posure	•		
	Size					R30				R60		
MAX, MAX		С	V	Rk,s,fi,30	[kN]		_{,fi,30} [Nm]	V _B	_{k,s,fi,60} [kN]		0 Rk,s,fi,60	Nm]
M6		40		,6 ¹⁾ /(⁾ /0,2 ²⁾		4 ¹⁾ /0,9 ²⁾		0,3 ¹⁾ /0,	1 ²⁾
M8		35		1,8	}		1,4		1,6		1,2	
M10		40				3,6			2,9		3,0	
M12	h _{ef} ≥	50		6,3	}		7,8		4,9		6,4	
M16		65		11,	7	1	9,9		9,1		16,3	
M20		100		18,			39,0		14,2		31,8	
M24		125		26,	3	6	57,3		20,5		55,0	
5	Size					R90				R120		
MAX, MAX	X A4, MA	XC	V _F	Rk,s,fi,90	o [kN]	M ⁰ _{Rk,s}	_{,fi,90} [Nm]	V _{Rk}	_{,s,fi,120} [kN]	M	Rk,s,fi,120	[Nm]
M6		40	0	,3 ¹⁾ /(),9 ²⁾	0,21	⁾ /0,1 ²⁾	0,	2 ¹⁾ /0,7 ²⁾		0,2 ¹⁾ /0, [·]	1 ²⁾
M8		35		1,3	}		1,0		1,2		0,8	
M10		40		2,2			2,4		1,9		2,1	
M12	h _{ef} ≥ _	50		3,5			5,0		2,8		4,3	
M16		65		6,6			2,6	_	5,3		11,0	
M20 M24		100 125		10,			24,6 12,6		8,3		21,4	
¹⁾ MAX gvz ²⁾ MAX A4	∉C 3: M inir				id min	imum edg		es of an	11,9 ichors u	nder fire	37,0 expos	ure
		131011	anu s	nea	illau							
Size				•	16	M8	MAX, M10	MAX A4, M12	MAX C M16	M20	M	24
Spacing		S _{min}		N		INIO	WITU	Annex B		IVIZU		24
Edge distan	се	C _{min}	[mm]			for fire expo		c _{min} = 2 · ł	٦ _{ef} ,			
Upat Ancho Performand		X, MAX	A4, MA	۸X							nex C	3

category C1									
Size					1	ИАХ А4,	1		
			M6	M8	M10	M12	M16	M20	M24
Length of anchor	L_{max}	·		167	186	221	285	394	477
Effective embedment depth	h _{ef}	[mm]	-	45	40 - 60	50 - 70	65 - 85	100	125
Steel failure				I	I	I	1		
Characteristic resistance tension load C1	N _{Rk,s,eq,C1}	[kN]	-	16,0	27,0	41,0	66,0	111,0	150,0
Partial factor for steel failure	γ _{Ms,C1} 1)	[-]				1	,5		
Pullout failure					1		1		
Characteristic resistance tension load ir cracked concrete C1	N _{Rk,p,eq,C1}	[kN]	-	4,6	8,0	16,0	28,2	36,0	50,3
Installation factor	γinst	[-]				1	,0		
Steel failure without lever arm				1					
Characteristic resistance shear load C1	V _{Rk,s,eq,C1}	[kN]		11	17	27	47	56	69
Partial factor for steel failure	γ _{Ms,C1} 1)	[-]	-			1,	25		
Table C4.2: Characteristic values category C2			i snea	TESISI				CUON	
Size			M6	M8	M10	M12	M16	M20	M24
Length of anchor	L_{max}	[mm]		-	186	221	285	394	-
Steel failure									
Characteristic resistance tension load C2	$N_{Rk,s,eq,C2}$	[kN]		-	27	41	66	111	-
Partial factor for steel failure	$\gamma_{Ms,C2}^{2)}$	[-]				1	,5		
Pullout failure									
	h _{ef}				60	70	85	100	-
Characteristic resistance tension load	N _{Rk,p,eq,C2}	[kN]			5,1	7,4	21,5	30,7	
in cracked concrete C2	h _{ef}				40-59	50-69	65-84	-	
	$N_{Rk,p,eq,C2}$	[kN]			2,7	4,4	16,4		
Installation factor	γinst	[-]				1,0			
Steel failure without lever arm		<i>[</i>]				70	05	100	
	h _{ef}				60	70	85 27,5	100 39,9	-
Characteristic resistance shear load C2	V _{Rk,s,eq,C2}			-	10,0 40-59			39,9	
62	h _{ef}				7,0	50-69 12,7	65-84 22,0	-	-
Partial factor for steel failure	V _{Rk,s,eq,C2}				7,0		22,0		
	γ _{Ms,C2} ²⁾					1,25	3)		
Factor for annular gap ¹⁾ MAX C: Only valid for cold-formed ver ²⁾ In absence of other national regulatior ³⁾ Value in brackets valid for filled annular ga FFD is required.	าร					0,5 (1,0) ⁵ re. Use of		Jpat filling	Disc
Upat Anchor bolt MAX, MAX A4, MAX									4

0					MAX,	MAX A4	I, MAX (2	
Size			M6	M8	M10	M12	M16	M20	M24
Displacement – factor for te	ensile load ¹⁾								
δ_{N0} - factor			0,13	0,22	0,12	0,09	0,08	0,07	0,05
			1,00	0,78	0,40	0,19		,09	0,07
$\delta_{N^{\infty}}$ - factor			0,16	0,07 0,29	0,05	0,14	,06 0,10	0,05	0,04
Table C5.2: Displaceme	ents under shear	loads		- ,		-,			
		loudo				МАХ			
Size			M6	M8	M10	M12	M16	M20	M2 4
Displacement – factor for s	hear load ²⁾			0.05				0.00	
δ_{V0} - factor		[mm/kN]	0,6	0,35 0,52	0,37	0,27	0,10	0,09	0,0
			0,9	0,52		X A4, N		0,15	0,1
		5	0,6	0,23	0,19	0,18	0,10	0,11	0,0
$\delta_{V\infty}$ - factor		[mm/kN]	0,9	0,27	0,22	0,16	0,11	0,05	0,0
¹⁾ Calculation of effective disp $\delta_{N0} = \delta_{N0} - factor \cdot N_{ED}$ $\delta_{N\infty} = \delta_{N\infty} - factor \cdot N_{ED}$ (N _{ED} : Design value of the a	pplied tension force)	δ _V δ _V (V	$\delta_{D} = \delta_{V0} - \delta_{V\infty} - \delta_{V\infty}$ = $\delta_{V\infty}$ - ED: Desig	factor factor gn value	· V _{ED} · V _{ED} e of the		shear fo	,	
$\begin{array}{l} \delta_{\text{N0}} = \delta_{\text{N0}} - \text{factor} \cdot N_{\text{ED}} \\ \delta_{\text{N}\infty} = \delta_{\text{N}\infty} - \text{factor} \cdot N_{\text{ED}} \end{array}$	pplied tension force)	δ _V δ _V (V	$\delta_{D} = \delta_{V0} - \delta_{V\infty} - \delta_{V\infty}$ = $\delta_{V\infty}$ - ED: Desig	factor - factor gn value nic ca	V _{ED} V _{ED} e of the	applied y C2 fc	shear fo or all er	,	ent
$\begin{split} \delta_{\text{N0}} &= \delta_{\text{N0}} - \text{factor} \cdot \text{N}_{\text{ED}} \\ \delta_{\text{N}\infty} &= \delta_{\text{N}\infty} - \text{factor} \cdot \text{N}_{\text{ED}} \\ (\text{N}_{\text{ED}} \text{: Design value of the a} \\ \end{split}$	pplied tension force)	δ _ν δ _ν (V on loads fo	₀ = δ _{V0} − ∞ = δ _{V∞} − _{ED} : Desig r seisr	factor factor gn value nic ca	V _{ED} V _{ED} e of the tegor	applied y C2 fc	shear fo or all er MAX C	nbedm	
$\begin{split} \delta_{N0} &= \delta_{N0} - \text{factor} \cdot N_{\text{ED}} \\ \delta_{N\infty} &= \delta_{N\infty} - \text{factor} \cdot N_{\text{ED}} \\ (N_{\text{ED}}: \text{Design value of the a} \\ \end{split}$	pplied tension force) ents under tensio	δ _ν δ _ν (V on loads fo	₀ = δ _{V0} − ∞ = δ _{V∞} − _{ED} : Desig r seisr	factor factor gn value nic ca	V _{ED} V _{ED} e of the ntegory MAX, M	applied y C2 fc AX A4, I M12	shear fo or all er MAX C M16	nbedm M20	ent M24
$\begin{split} \delta_{N0} &= \delta_{N0} - \text{factor} \cdot N_{\text{ED}} \\ \delta_{N\infty} &= \delta_{N\infty} - \text{factor} \cdot N_{\text{ED}} \\ (N_{\text{ED}}: \text{Design value of the a} \\ \end{split}$	pplied tension force)	δ _ν δ _ν (V on loads fo	₀ = δ _{V0} − ∞ = δ _{V∞} − _{ED} : Desig r seisr	factor factor gn value nic ca N M8	V _{ED} V _{ED} e of the tegor	applied y C2 fc	shear fo or all er MAX C M16	nbedm	
$\begin{split} \delta_{N0} &= \delta_{N0} - \text{factor} \cdot N_{\text{ED}} \\ \delta_{N\infty} &= \delta_{N\infty} - \text{factor} \cdot N_{\text{ED}} \\ (N_{\text{ED}}: \text{Design value of the a} \\ \hline \textbf{Table C5.3: Displacem} \\ \text{depths} \\ \hline \text{Size} \\ \hline \text{Displacement DLS} \\ \hline \text{Displacement ULS} \\ \hline \textbf{Table C5.4: Displacem} \\ \text{embedmer} \\ \hline \end{array}$	ents under tensi on	δ _ν δ _ν (V on loads fo	₀ = δ _{V0} − ∞ = δ _{V∞} − ED: Desig r seisr //6 I	factor factor gn value nic ca M8	• V _{ED} • V _{ED} e of the htegor MAX, M M10 2,7 11,5 • gory	applied y C2 fc AX A4, I M12 4,4 13,0	shear fo or all er MAX C M16 12,3 all	nbedm <u>M20</u> 5,6	
$\begin{split} \delta_{N0} &= \delta_{N0} - \text{factor} \cdot N_{\text{ED}} \\ \delta_{N\infty} &= \delta_{N\infty} - \text{factor} \cdot N_{\text{ED}} \\ (N_{\text{ED}}: \text{Design value of the a} \\ \end{split}$ $\begin{aligned} \textbf{Table C5.3: Displacem } \\ \text{depths} \\ \end{aligned}$ Size $\begin{aligned} \text{Displacement DLS} \\ \text{Displacement ULS} \\ \end{aligned}$	ents under tensi on	δν δν (V on loads fo	o = δ _{V0} - ∞ = δ _{V∞} - ED: Desig r seisr //6 1 seismi	factor factor gn value nic ca M8 C cate	• V _{ED} • V _{ED} e of the htegor MAX, M M10 2,7 11,5 • gory	applied y C2 fc AX A4, I M12 4,4 13,0	shear fo or all er MAX C M16 12,3 all	nbedm <u>M20</u> 5,6	
$\begin{split} \delta_{N0} &= \delta_{N0} - \text{factor} \cdot N_{\text{ED}} \\ \delta_{N\infty} &= \delta_{N\infty} - \text{factor} \cdot N_{\text{ED}} \\ (N_{\text{ED}}: \text{Design value of the a} \\ \end{split}$ $\begin{aligned} \textbf{Table C5.3: Displacem } \\ \text{depths} \\ \end{aligned}$ Size $\begin{aligned} \text{Displacement DLS} \\ \text{Displacement ULS} \\ \end{aligned}$ $\begin{aligned} \textbf{Table C5.4: Displacem } \\ \text{embedmen} \\ \end{aligned}$	ents under tensio	οn loads fo [mm]	o = δ _{V0} - ∞ = δ _{V∞} - ED: Desig r seisr //6 1 seismi	factor factor gn value nic ca M8 C cate	• V _{ED} • V _{ED} e of the htegory MAX, M/ M10 2,7 11,5 • gory (MAX, M/	applied y C2 fc AX A4, I M12 4, 13,0 C2 for a	shear fo or all er MAX C M16 12,3 all MAX C	nbedm <u>M20</u> <u>5,6</u> 14,4	M24 -
$\begin{split} \delta_{\text{N0}} &= \delta_{\text{N0}} - \text{factor} \cdot \text{N}_{\text{ED}} \\ \delta_{\text{N\infty}} &= \delta_{\text{N\infty}} - \text{factor} \cdot \text{N}_{\text{ED}} \\ (\text{N}_{\text{ED}}: \text{Design value of the a} \\ \hline \textbf{Table C5.3: Displacem} \\ \text{depths} \\ \hline \textbf{Size} \\ \hline \textbf{Displacement DLS} \\ \hline \textbf{Displacement ULS} \\ \hline \textbf{Table C5.4: Displacem} \\ \text{embedmer} \\ \hline \textbf{Size} \\ $	ents under tensi on	δν δν (V on loads fo	o = δ _{V0} - ∞ = δ _{V∞} - ED: Desig r seisr //6 1 seismi	factor factor gn value nic ca M8 C cate	V _{ED} V _{ED} e of the Itegor MAX, MA 2,7 11,5 egory (MAX, MA M10	applied y C2 fc AX A4, I M12 13,0 C2 for AX A4, I M12	shear fo or all er MAX C M16 12,3 all MAX C M16	mbedm <u>M20</u> <u>5,6</u> 14,4 <u>M20</u>	M2 4