

DECLARATION OF PERFORMANCE

No. 0043 - EN

- 1. Unique identification code of the product-type: Upat Anchor Bolt MAX
- 2. Intended use/es:

Product	Intended use/es
Metal anchors for use in concrete (heavy-	For fixing and/or supporting concrete structural elements or heavy units such as
duty type)	cladding and suspended ceilings, see appendix, especially Annexes B 1 to B 4

3. Manufacturer: Upat Vertriebs GmbH, Otto-Hahn-Straße 15, 79211 Denzlingen, Germany

4. Authorised representative: --

5. System/s of AVCP: 1

6a. Harmonised standard: ---

Notified body/ies: ---

6b. European Assessment Document: ETAG 001; 2013-04

European Technical Assessment: ETA-10/0170; 2015-05-07

Technical Assessment Body: DIBt

Notified body/ies: 1343 - MPA Darmstadt

7. Declared performance/s:

Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi static action for design	See appendix, especially Annexes C 1 to C 3
according to ETAG 001 Annex C or CEN/TS 1992-4:2009	
Characteristic resistance for Seismic performance categories C1 and C2	See appendix, especially Annexes C 6 to C 7
Displacements under static and quasi static action	See appendix, especially Annex C 8
Displacements under seismic action	See appendix, especially Annex C 9

Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A 1
Characteristic resistance under fire exposure	See appendix, especially Annex C 4, C 5

8. Appropriate Technical Documentation and/or Specific Technical Documentation: ---

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

1.V. (A. BULL)

Andreas Bucher, Dipl.-Ing.

Wolfgang Hengesbach, Dipl.-Ing., Dipl.-Wirtsch.-Ing.

i.V. W. Kylal

Tumlingen, 2015-05-18

- This DoP has been prepared in different languages. In case there is a dispute on the interpretation the english version shall always prevail.

- The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Specific Part

1 Technical description of the product

The UPAT Anchor bolt MAX is an anchor made of galvanised steel (MAX) or made of stainless steel (MAX A4) or high corrosion resistant steel (MAX C) which is placed into a drilled hole and anchored by torque-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi static action for design according to ETAG 001 Annex C or CEN/TS 1992-4:2009	See Annex C 1 to C 3
Characteristic resistance for Seismic performance categories C1 and C2	See Annex C 6 to C 7
Displacements under static and quasi static action	See Annex C 8
Displacements under seismic action	See Annex C 9

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Characteristic resistance under fire exposure	See Annex C 4,C 5

3.3 Hygiene, health and the environment (BWR 3)

Not applicable.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

3.5 Protection against noise (BWR 5)

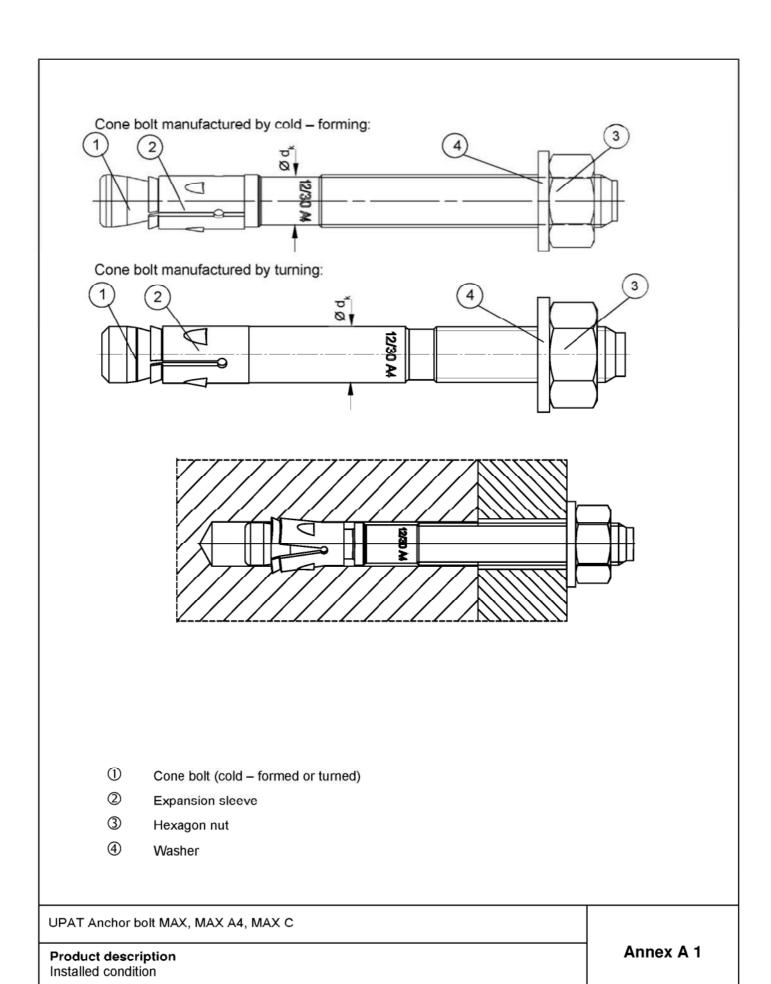
Not applicable.

3.6 Energy economy and heat retention (BWR 6)

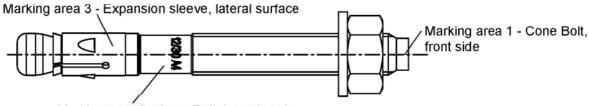
Not applicable.

3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.


3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.


4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	_	1

MAX for use with standard and reduced anchorage depth (hef, sta and hef, red):

Marking area 2 - Cone Bolt, lateral surface

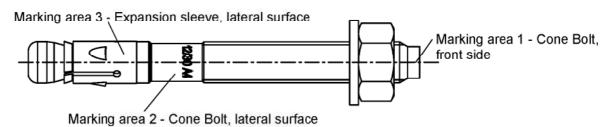
Product label, example:

MAX

Brand | type of anchor
placed on marking area 2 or marking area 3

MAX

12/10 A4


thread size / max. thickness of fixture (t_{fix}) for h_{ef, sta} identification A4

placed on marking area 2

Table A1: Letter-code on marking area 1 and maximum thickness of fixture t_{fix}:

marking		(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(l)	(K)	(L)	(M)	(N)	(O)	(P)	(R)	(S)	(T)	(U)	(V)	(W)	(X)	(Y)	(Z)
max. t _{fix} for h _{ef, sta}	M8-M24	5	10	15	20	25	30	35	40	45	50	60	70	80	90	100	120	140	160	180	200	250	300	350	400
max. t _{fix} for h _{ef, red}	M10- M16	25	30	35	40	45	50	55	60	65	70	80	90	100	110	120	140	160	180	200	220	270	320	370	420

MAX K for use with reduced anchorage depth only (hef, red):

Product label, example:

Brand | type of anchor placed on marking area 2 or marking area 3

MAX 12/10 K A4

thread size / max. thickness of fixture (t_{fix}) identification K for h_{ef, red} | identification A4 placed on marking area 2

Table A2: Letter-code on marking area 1 and maximum thickness of fixture t_s:

marking		(a)	(b)	(c)	(d)
max. t _{fix} for h _{ef, red}	M10-M16	5	10	15	20

Identification for hef, red are lower-case letters

UPAT Anchor bolt MAX, MAX A4, MAX C	
Product description Anchor Types	Annex A 2

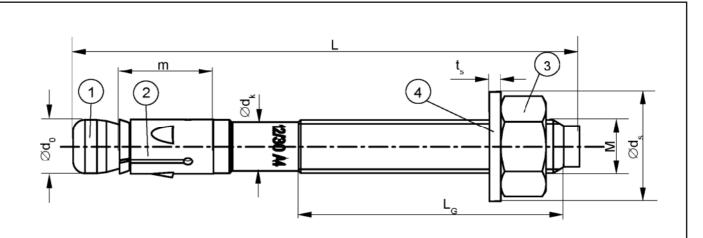


Table A3: Anchor dimensions [mm]

Part	Designation	Designation			MAX, MAX A4, MAX C							
rait	Designation			М8	M10	M12	M16	M20	M24			
			size M	M8	M10	M12	M16	M20	M24			
,	Cono holt	$\emptyset d_0$		7,8	9,8	11,8	15,7	19,8	23,5			
1	Cone bolt	$\emptyset d_k$	ļ	7,1	8,9	10,7	14,5	19,8	23,5			
		L _G	≥	19	26	31	40	50	57			
<u> </u>	Expansion sleeve	m		17,8	20,0	20,6	27,5	33,4	40,2			
2		sheet tl	nickness	1,3	1,4	1,6	2,4	2,4	3,0			
3	Hexagon nut	wrench	size	13	17	19	24	30	36			
	Machan	ts	≥	1,4	1,8	2,3	2,7	2,7	3,7			
4	Washer	Ø d₅	≥	15	19	23	29	36	43			
Thicks	T 111		≥	0	0	0	0	0	0			
Thickness of fixture		t _{fix}	≤	200	250	300	400	500	600			
Longth	Length of anchor		=	64,5	64,5	79	102	141	174			
Lengu			=	267	336	401	524,5	644	777			

UPAT Anchor bolt MAX, MAX A4, MAX C	
Product description Anchor dimensions	Annex A 3

Table A4: Materials MAX

Part	Designation	Material
1	Cone bolt	Cold form steel or free cutting steel (zinc plated) Nominal steel tensile strength: f _{uk} ≤ 1000 N/mm²
2	Expansion sleeve	Cold strip, EN 10139:2013 (zinc plated)
3	Hexagon nut	Steel, property class min. 8, EN ISO 898-2:2012 (zinc plated)
4	Washer	Cold strip, EN 10139:2013 (zinc plated)

Table A5: Materials MAX A4

Part	Designation	Material
1	Cone bolt	stainless steel EN 10088:2014 Nominal steel tensile strength: f _{uk} ≤ 1000 N/mm²
2	Expansion sleeve	stainless steel EN 10088:2014
3	Hexagon nut	stainless steel EN 10088:2014; ISO 3506-2: 2009; property class – min. 70
4	Washer	stainless steel EN 10088:2014

Table A6: Materials MAX C

Part	Designation	Material
1	Cone bolt	high corrosion resistant steel EN 10088:2014 Nominal steel tensile strength: f _{uk} ≤ 1000 N/mm²
2	Expansion sleeve	stainless steel EN 10088:2014
3	Hexagon nut	high corrosion resistant steel EN 10088:2014; ISO 3506-2:2009; property class – min. 70
4 Washer		high corrosion resistant steel EN 10088:2014

UPAT Anchor bolt MAX, MAX A4, MAX C	
Product description Materials	Annex A 4

Specifications of intended use

Anchorages subject to:

				/						
	M8	M10	M12	M16	M20	M24				
				/	2					
Static and quasi-static action Cracked and non-cracked concrete Fire exposure			/							
C2 ¹⁾	-				=					
	-		/							
	-	M10	M12	M16						
			/							
	- 1		/							
	-		/							
C1	-	/				-				
C2 ¹⁾	-	/								
	C2 ¹⁾	C1 C2 ¹⁾ - - - - - C1 -	C1 C2 ¹⁾ -	C1	C1	C1				

¹⁾ MAX C: Only valid for cold-formed version (see A1)

Base materials:

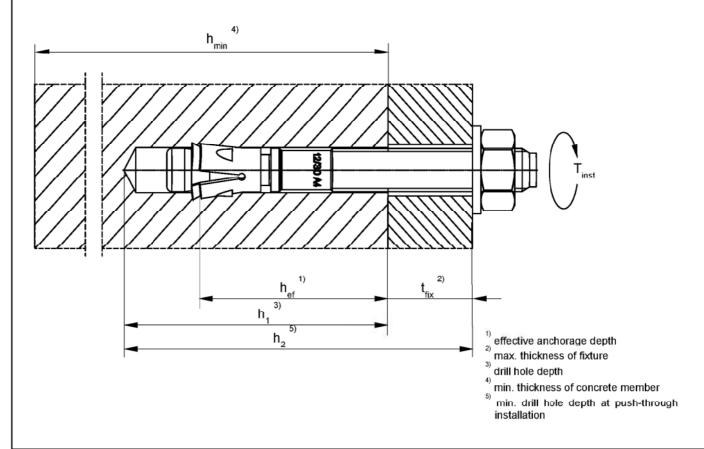
- Reinforced and unreinforced normal weight concrete (cracked and non-cracked according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (MAX, MAX A4, MAX C).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist. (MAX A4, MAX C).
- Structures subject to external atmospheric exposure and permanently damp internal, if other particular aggressive conditions exist (MAX C).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:


- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement
 or to supports, etc.).
- Anchorages under static or quasi-static actions are to be designed in accordance with (please choose the relevant design method):
 - ETAG 001, Annex C, design method A, Edition August 2010 or
 - CEN/TS 1992-4:2009, design method A
- · Anchorages under seismic actions (cracked concrete) are to be designed in accordance with:
 - EOTA Technical Report TR 045, Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer under seismic action are not allowed.
- Anchorages under fire exposure are to be designed in accordance with:
 - EOTA Technical Report TR 020, Edition May 2004
 - CEN/TS 1992-4:2009, Annex D
 - It must be ensured that local spalling of the concrete cover does not occur.

UPAT Anchor bolt MAX, MAX A4, MAX C	
Intended Use Specifications	Annex B 1

Table B1: Installation parameters

Type of anchor / size			MAX, MAX A4, MAX C							
Type of afficient 7 size		М8	M10	M12	M16	M20	M24			
Nominal drill hole diameter	$d_0 = [mm]$	8	10	12	16	20	24			
Cutting diameter of drill bit	$d_{cut} \leq [mm]$	8,45	10,45	12,5	16,5	20,55	24,55			
Standard anchorage depth	$h_{\text{ef,sta}} \geq [mm]$	45	60	70	85	100	125			
Depth of drill hole in concrete for h _{ef,sta}	$h_{1,sta} \geq \text{[mm]}$	55	75	90	110	125	155			
Reduced anchorage depth	$h_{\text{ef,red}} \geq \text{[mm]}$	-	40	50	65	-	-			
Depth of drill hole in concrete for h _{ef,red}	$h_{1,\text{red}} \geq [mm]$	-	55	70	90	ı	ı			
Diameter of clearance hole in the fixture ¹⁾	$d_{f} \! \leq \! \; [mm]$	9	12	14	18	22	26			
Required torque moment	T _{inst} = [Nm]	20	45	60	110	200	270			

¹⁾ If a larger diameter of the clearance hole in the fixture is used, see Chapter 4.2.2.1 of ETAG 001, Annex C

UPAT Anchor bolt MAX, MAX A4, MAX C

Intended Use
Installation parameters

Annex B 2

Table B2: Minimum thickness of concrete members, minimum spacings and minimum edge distances of anchors for **standard anchorage depth (h**_{e1, sta})

	Type of anchor / size			MA	X, MAX	A4, MAX	(C	
	Type of affector 7 size		М8	M10	M12	M16	M20	M24
Standard	effective anchorage depth	$\mathbf{h}_{ef,sta} \geq [mm]$	45	60	70	85	100	125
crete 2 x h _{ef}	Minimum thickness of concrete member	h _{min, 1} [mm]	100	120	140	170	200	250
concrete ss ≥ 2 x b	Non – cracked concrete							
I č ∧	Minimum spacing -	s _{min} [mm]	40	40	50	65	95	100
	Millinarii spacing	for $c \ge [mm]$	50	60	70	95	180	200
<u>¥</u> X	Minimum adaa distance	c _{min} [mm]	40	45	55	65	95	135
lions with co of thickness	Minimum edge distance	for $s \ge [mm]$	100	80	110	150	190	235
	Cracked concrete							
Applicat members	Minimum spacing -	s _{min} [mm]	35	40	50	65	95	100
l de de		for $c \ge [mm]$	50	55	70	95	140	170
ner A	Minimum edge distance	c _{min} [mm]	40	45	55	65	85	100
_	Willindin edge distance	for $s \ge [mm]$	70	80	110	150	190	220
with bers of x h _{ef}	Minimum thickness of concrete member	h _{min, 2} [mm]	80	100	120	140	160	200
s w obe	Cracked and non-cracked co	oncrete						
Applications with concrete members thickness < 2 x h _e	Sm		35	40	50	80	125	150
licat	Minimum spacing -	for c ≥ [mm]	70	100	90	130	220	230
Application and a substruction a	Minimum edge distance	c _{min} [mm]	40	60	60	65	125	135
Cor □	willimum edge distance	for $s \ge [mm]$	100	90	120	180	230	235

Intermediate values for s_{\min} and c_{\min} inside of the same thickness of concrete member by linear interpolation.

Table B3: Minimum thickness of concrete members, minimum spacings and minimum edge distances of anchors for **reduced anchorage depth** (h_{ef, red})

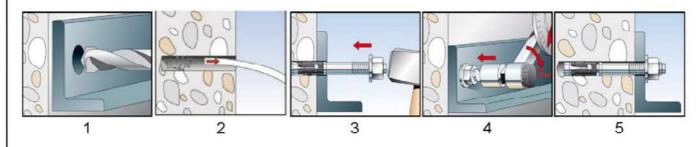
	Type of engher / size		M.A	(C	
	Type of anchor / size		M10	M12	M16
Reduced	d effective anchorage depth	$\mathbf{h}_{ef,red} \geq [mm]$	40	50	65
e h _{ef}	Minimum thickness of concrete member	h _{min, 3} [mm]	80	100	140
2×	Non – cracked concrete				
concrete ss≥2 x ł	Minimum anasina	s _{min} [mm]	40	50	65
	Minimum spacing	for c ≥ [mm]	100	110	130
έŘ	Minimum adaa diatanaa	c _{min} [mm]	45	55	65
ions with conc of thickness ≥	Minimum edge distance	for s ≥ [mm]	180	220	250
ë of 1	Cracked concrete				
Sal	Minimum ana sina	s _{min} [mm]	40	50	65
Applications with members of thickne	Minimum spacing	for c ≥ [mm]	90	110	130
A P	Minimum adda distance	c _{min} [mm]	45	55	65
=	Minimum edge distance	for s ≥ [mm]	180	220	250

Intermediate values for s_{min} and c_{min} by linear interpolation.

UPAT Anchor bolt MAX, MAX A4, MAX C

Intended Use
Minimum thickness, minimum spacings and edge distances

Annex B 3


Table B4: Minimum spacings and minimum edge distances of anchors according to TR 020 and ETAG 001, Annex C under fire exposure and according to CEN/TS 1992-4: 2009, Annex D under fire exposure

Type of anchor / size			MAX, MAX A4, MAX C						
Туре о	Type of anchor / size			M10	M12	M16	M20	M24	
Spacing	S _{min}	[mm]	35	40	45	60	95	100	
Edge distance	C _{min}	[mm]	c_{min} = 2 x h_{ef} , for fire exposure from more than one side $c_{min} \ge 300$ mm						

Installation instructions

The fitness for use of the anchor can only be assumed if the anchor is installed as follows:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- · Use of the anchor only as supplied by the manufacturer without exchanging the components of the anchor
- Checking before placing the anchor to ensure that the strength class of the concrete in which the anchor is to be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply.
- · Check of concrete being well compacted, e.g. without significant voids
- · Edge distances and spacing not less than the specified values without minus tolerances.

No.		Description
·	Create drill hole	
1		Drill hole perpendicular to concrete surface, positioning without damaging the reinforcement. In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.
2	Clean bore hole	
3	Set anchor	
4	Expand anchor wi	ith prescribed installation torque T _{inst}
5	Finished installation	on

UPAT Anchor bolt MAX, MAX A4, MAX C	
Intended Use Minimum spacings and edge distances Installation parameters	Annex B 4

Table C1: Characteristic values of tension resistance for standard anchorage depth under static and quasi-static action (Design method A, according to ETAG 001, Annex C or **CEN/TS 1992-4)**

Time of anchor / sinc				MA	X, MAX	(A4, M <i>A</i>	X C	
Type of anchor / size			М8	M10	M12	M16	M20	M24
Steel failure for standard anchorage	je depth							
Characteristic resistance	$N_{Rk,s}$	[kN]	16,0	27,0	41,5	66,0	111,0	150,0
Partial safety factor	γ _{Ms} 3)					1,5		
Pullout failure for standard anchor	age depti	n						
Effective anchorage depth	$h_{ef,sta} \ge$	[mm]	45	60	70	85	100	125
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	5	9	16		- 1)	
Characteristic resistance in non - cracked concrete C20/25	$N_{Rk,p}$	[kN]	9	16	25		- 1)	
		C25/30			1	,10		
Increasing factors for N for		C30/37				,22		
Increasing factors for N _{Rk,p} for cracked and non – cracked	117	C35/45			1	,34		
concrete	Ψс	C40/50				,41		
		C45/55				,48		
		C50/60				,55		
Installation safety factor	γ2 = γinst				•	1,0		
Concrete cone and splitting failure members of thickness ≥ 2x h _{ef}	for stanc	dard anch	norage	depth ir	n applic	ations v	vith con	crete
Effective anchorage depth	h _{ef}	[mm]	45	60	70	85	100	125
Factor for non-cracked concrete	k _{ucr}	[-]			1	0,1		
Factor for cracked concrete	k _{cr}	[-]			7	7,2		
Min. thickness of concrete member	h _{min,1}	[mm]	100	120	140	170	200	250
Characteristic spacing	S _{cr,N}	[mm]			3	h _{ef}		
Characteristic edge distance	C _{cr,N}	[mm]			1,	5 h _{ef}		
Spacing (splitting failure) 2)	S _{cr,sp}	[mm]	140	180	210	260	370	430
Edge distance (splitting failure) 2)	C _{cr,sp}	[mm]	70	90	105	130	185	215
Concrete cone and splitting failure members of thickness < 2x hef		dard anch	norage	depth ir	applic	ations v	vith con	crete
Effective anchorage depth	h _{ef}	[mm]	45	60	70	85	100	125
Factor for non-cracked concrete	k _{ucr}	[-]			1	0,1		
Factor for cracked concrete	k _{cr} [-] 7,2							
Min. thickness of concrete member	h _{min,2}	[mm]	80	100	120	140	160	200
Characteristic spacing	S _{cr,N}	[mm]						
Characteristic edge distance	C _{cr,N}	[mm]				5 h _{ef}		
Spacing (splitting failure) 2)	S _{cr,sp}	[mm]	180	240	280	340	480	550
Edge distance (splitting failure) 2)	C _{cr,sp}	[mm]	90	120	140	170	240	275

UPAT Anchor bolt MAX, MAX A4, MAX C	
Performances Characteristic values of resistance under tension loads for standard anchorage depth (Design method A, according to ETAG 001, Annex C or CEN/TS 1992-4)	Annex C 1

Pullout failure not relevant.
 Intermediate values for s_{cr,sp} and c_{cr,sp} between concrete thickness h_{min,2} and h_{min,1} by linear interpolation.
 In absence of other national regulations

Table C2: Characteristic values of **tension** resistance for **reduced anchorage depth** under static and quasi-static action (Design method A, according to **ETAG 001, Annex C** or CEN/TS 1992-4:2009)

Type of anchor / size			MAX, MAX A4, MAX C					
Type of afficilor / Size			M10	M12	M16			
Steel failure for reduced anchorage	e depth							
Characteristic resistance	$N_{Rk,s}$	[kN]	27,0	41,5	66,0			
Partial safety factor	γ _{Ms} 2)			1,5				
Pullout failure for reduced anchora	ge depth	1						
Effective anchorage depth	h _{ef,red} ≥	[mm]	40	50	65			
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]		_ 1)				
Characteristic resistance in non - cracked concrete 20/25	$N_{Rk,p}$	[kN]		- ¹⁾				
		C25/30		1,10				
Increasing factors for N for		C30/37		1,22				
Increasing factors for N _{Rk,p} for cracked and non – cracked	111	C35/45		1,34				
concrete	Ψ_{c}	C40/50		1,41				
551151515		C45/55		1,48				
		C50/60		1,55				
Installation safety factor	γ2 = γinst	ı		1,0				
Concrete cone an	d splittin	g failure f	or reduced and	horage depth				
Effective anchorage depth	h_{ef}	[mm]	40	50	65			
Factor for non-cracked concrete	K _{ucr}	[-]		10,1				
Factor for cracked concrete	k_{cr}	[-]		7,2				
Min. thickness of concrete member	h _{min,3}	[mm]	80	100	140			
Characteristic spacing	scr,N	[mm]		3 h _{ef}				
Characteristic edge distance	C _{cr,N}	[mm]		1,5 h _{ef}				
Spacing (splitting failure)	S _{cr,sp}	[mm]	160	200	260			
Edge distance (splitting failure)	C _{cr,sp}	[mm]	80	100	130			

UPAT Anchor bolt MAX, MAX A4, MAX C	
Performances Characteristic values of resistance under tension for reduced anchorage depth (Design method A, according to ETAG 001, Annex C or CEN/TS 1992-4:2009)	Annex C 2

Pullout failure not relevant.
 In absence of other national regulations

Table C3: Characteristic values of shear resistance for standard and reduced anchorage depth under static and quasi-static action (Design method A, according to ETAG 001, Annex C or CEN/TS 1992-4:2009))

Time of analysis			MAX, MAX A4, MAX C					
Type of anchor / size			М8	M10	M12	M16	M20	M24
Steel failure without lever arm for stand	ard and r	educed	anchor	age dep	th			
Characteristic resistance	$V_{Rk,s}$	[kN]	12,0	20,0	29,5	55,0	70,0	86,0
Partial safety factor	γ _{Ms} 1)				1,	25		
Factor for ductility	k_2	[-]			1	,0		
S	tandard a	anchoraç	ge deptl	1				
Steel failure with lever arm								
Characteristic bending resistance	$M^0_{Rk,s}$	[Nm]	26	52	92	233	487	769
Partial safety factor	γMs ¹⁾				1,	25		
Factor for ductility	k ₂	[-]			1	,0		
Concrete pryout failure								
Factor k according to ETAG 001, Annex C or k₃ according to CEN/TS 1992-4	k ₍₃₎		2	,2	2,4		2,8	
Concrete edge failure								
Effective length of anchor in shear loading	I _f	[mm]	45	60	70	85	100	125
Effective diameter of anchor	d_{nom}	[mm]	8	10	12	16	20	24
Installation safety factor	γ2 = γinst				1	,0		
R	educed a	nchorag	je depti	1				
Steel failure with lever arm								
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	-	40	89	171	-	-
Partial safety factor	γMs ¹⁾				1,	25		
Factor for ductility	k ₂	[-]			1	,0		
Concrete pryout failure								
Factor k according to ETAG 001, Annex C or k ₃ according to CEN/TS 1992-4	k ₍₃₎		-	2,0	2	.,3	-	-
Concrete edge failure								
Effective length of anchor in shear loading	I _f	[mm]	-	40	50	65	-	-
Effective diameter of anchor	d_{nom}	[mm]	-	10	12	16	-	-

¹⁾ In absence of other national regulations

UPAT Anchor bolt MAX, MAX A4, MAX C	
Performances Characteristic values of resistance under shear loads (Design method A, according to ETAG 001, Annex C or CEN/TS 1992-4:2009)	Annex C 3

Table C4: Characteristic values of tension resistance under fire exposure in cracked and noncracked concrete for standard and reduced anchorage depth (Design according to TR 020 and ETAG 001, Annex C or CEN/TS 1992-4: 2009, Annex D)

Type of anchor / size	Fire res	R30 sistance 30) minutes	R60 Fire resistance 60 minutes			
Type of anchor / size MAX, MAX A4, MAX C	N _{Rk,s,fi,30} [kN]	N _{Rk,p,fi,30} [kN]	N ⁰ _{Rk,c,fi,30} [kN]	N _{Rk,s,fi,60} [kN]	N _{Rk,p,fi,60} [kN]	N ⁰ _{Rk,c,fi,60} [kN]	
Standard anchorage depth							
M8	1,4	1,3	2,4	1,2	1,3	2,4	
M10	2,8	2,3	5,0	2,3	2,3	5,0	
M12	5,0	4,0	7,4	4,1	4,0	7,4	
M16	9,4	7,1	12,0	7,7	7,1	12,0	
M20	14,7	9,0	18,0	12,0	9,0	18,0	
M24	21,1	12,6	31,4	17,3	12,6	31,4	
Reduced anchorage depth							
M10	2,8	2,3	1,8	2,3	2,3	1,8	
M12	5,0	3,2	3,2	4,1	3,2	3,2	
M16	9,4	4,7	6,1	7,7	4,7	6,1	
	l	R90		R120 Fire resistance 120 minutes			
	Fire res	sistance 90) minutes	Fire res) minutes	
	Fire res N _{Rk,s,fi,90} [kN]) minutes N ⁰ _{Rk,c,fi,90} [kN]	Fire res N _{Rk,s,fi,120} [kN]		ninutes N ⁰ _{Rk,c,fi,120} [kN]	
Standard anchorage depth	N _{Rk,s,fi,90}	sistance 90	N ⁰ _{Rk,c,fi,90}	N _{Rk,s,fi,120}	istance 120 N _{Rk,p,fi,120}	N ⁰ _{Rk,c,fi,120}	
Standard anchorage depth M8	N _{Rk,s,fi,90}	sistance 90	N ⁰ _{Rk,c,fi,90}	N _{Rk,s,fi,120}	istance 120 N _{Rk,p,fi,120}	N ⁰ _{Rk,c,fi,120}	
	N _{Rk,s,fi,90} [kN]	N _{Rk,p,fi,90} [kN]	N ⁰ _{Rk,c,fi,90} [kN]	N _{Rk,s,fi,120} [kN]	N _{Rk,p,fi,120} [kN]	N ^o _{Rk,c,fi,120} [kN]	
M8	N _{Rk,s,fi,90} [kN]	N _{Rk,p,fi,90} [kN]	N ^o _{Rk,c,fi,90} [kN]	N _{Rk,s,fi,120} [kN]	N _{Rk,p,fi,120} [kN]	N ⁰ _{Rk,c,fi,120} [kN]	
M8 M10	N _{Rk,s,fi,90} [kN] 0.9 1,9	N _{Rk,p,fi,90} [kN]	N ^o _{Rk,c,fi,90} [kN] 2.4 5,0	N _{Rk,s,fi,120} [kN] 0.8 1,6	N _{Rk,p,fi,120} [kN]	N° _{Rk,c,fi,120} [kN] 1.9 4,0	
M8 M10 M12	N _{Rk,s,fi,90} [kN] 0.9 1,9 3,2	N _{Rk,p,fi,90} [kN] 1.3 2,3 4,0	N° _{Rk,c,fi,90} [kN] 2.4 5,0 7,4	N _{Rk,s,fi,120} [kN] 0.8 1,6 2,8	N _{Rk,p,fi,120} [kN] 1.0 1,8 3,2	N° _{Rk,c,fi,120} [kN] 1.9 4,0 5,9	
M8 M10 M12 M16	N _{Rk,s,fi,90} [kN] 0.9 1,9 3,2 6,0	1.3 2,3 4,0 7,1	N° _{Rk,c,fi,90} [kN] 2.4 5,0 7,4 12,0	N _{Rk,s,fi,120} [kN] 0.8 1,6 2,8 5,2	1.0 1,8 3,2 5,6	N° _{Rk,c,fi,120} [kN] 1.9 4,0 5,9 9,6	
M8 M10 M12 M16 M20	N _{Rk,s,fi,90} [kN] 0.9 1,9 3,2 6,0 9,4	1.3 2,3 4,0 7,1 9,0	N° _{Rk,c,fi,90} [kN] 2.4 5,0 7,4 12,0 18,0	N _{Rk,s,fi,120} [kN] 0.8 1,6 2,8 5,2 8,1	1.0 1,8 3,2 5,6	N° _{Rk,c,fi,120} [kN] 1.9 4,0 5,9 9,6 14,4	
M8 M10 M12 M16 M20 M24	N _{Rk,s,fi,90} [kN] 0.9 1,9 3,2 6,0 9,4	1.3 2,3 4,0 7,1 9,0	N° _{Rk,c,fi,90} [kN] 2.4 5,0 7,4 12,0 18,0	N _{Rk,s,fi,120} [kN] 0.8 1,6 2,8 5,2 8,1	1.0 1,8 3,2 5,6	N° _{Rk,c,fi,120} [kN] 1.9 4,0 5,9 9,6 14,4	
M8 M10 M12 M16 M20 M24 Reduced anchorage depth	N _{Rk,s,fi,90} [kN] 0.9 1,9 3,2 6,0 9,4 13,5	1.3 2,3 4,0 7,1 9,0 12,6	N° _{Rk,c,fi,90} [kN] 2.4 5,0 7,4 12,0 18,0 31,4	N _{Rk,s,fi,120} [kN] 0.8 1,6 2,8 5,2 8,1 11,6	1.0 1,8 3,2 5,6 7,2 10,1	N° _{Rk,c,fi,120} [kN] 1.9 4,0 5,9 9,6 14,4 25,1	

In absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{M,fi}$ = 1,0 is recommended.

UPAT Anchor bolt MAX, MAX A4, MAX C

Performances:
Characteristic values of resistance under tension loads and
(Design according to TR 020 and ETAG 001, Annex C or CEN/TS 1992-4: 2009, Annex D)

Annex C 4

Table C5: Characteristic values of shear resistance under fire exposure in cracked and non-cracked concrete for standard and reduced anchorage depth (Design according to TR 020 and ETAG 001, Annex C or CENT/TS 1992-4:2009, Anhang D)

	R30 Fire resistance 30 minutes			R60 Fire resistance 60 minutes				
Type of anchor / size			es			tes		
MAX, MAX A4, MAX C	V _{Rk.s.fi.30} [kN]	M ⁰ _{Rk,s,fi,30} [Nm]	k	V _{Rk.s.fi.60} [kN]	M ⁰ _{Rk.s.fi.60} [Nm]	k		
Standard anchorage depth								
M8	1,8	1,4	2,2	1,6	1,2	2,2		
M10	3,6	3,6	2,2	2,9	3,0	2,2		
M12	6,3	7,8	2,4	4,9	6,4	2,4		
M16	11,7	19,9	2,8	9,1	16,3	2,8		
M20	18,2	39,0	2,8	14,2	31,8	2,8		
M24	26,3	67,3	2,8	20,5	55,0	2,8		
Reduced anchorage depth								
M10	3,6	3,6	2,0	2,9	3,0	2,0		
M12	6,3	7,8	2,3	4,9	6,4	2,3		
M16	11,7	20,0	2,3	9,1	16,3	2,3		
	Fire resi	R90 stance 90 minut	es	Fire resist	R120 tance 120 mini	utes		
	Fire resi V _{Rk,s,fi,90} [kN]	R90 stance 90 minut M ⁰ _{Rk,s,fi,90} [Nm]	es k	Fire resist V _{Rk,s,fi,120} [kN]	R120 tance 120 minu M ⁰ _{Rk,s,fi,120} [Nm]	utes k		
Standard anchorage depth	$V_{Rk,s,fi,90}$	stance 90 minut		$V_{Rk,s,fi,120}$	tance 120 minu M ⁰ _{Rk,s,fi,120}			
Standard anchorage depth	$V_{Rk,s,fi,90}$	stance 90 minut		$V_{Rk,s,fi,120}$	tance 120 minu M ⁰ _{Rk,s,fi,120}			
	V _{Rk,s,fi,90} [kN]	stance 90 minut M ⁰ _{Rk,s,fi,90} [Nm]	k	V _{Rk,s,fi,120} [kN]	tance 120 minu M ⁰ _{Rk,s,fi,120} [Nm]	k		
M8	V _{Rk,s,fi,90} [kN]	stance 90 minut M ⁰ _{Rk,s,fi,90} [Nm]	k 2,2	V _{Rk,s,fi,120} [kN]	M ⁰ _{Rk,s,fi,120} [Nm]	k 2,2		
M8 M10	V _{Rk,s,fi,90} [kN] 1,3 2,2	stance 90 minut M ⁰ _{Rk,s,fi,90} [Nm]	2,2 2,2	V _{Rk,s,fi,120} [kN] 1,2 1,9	0,8 2,1	2,2 2,2		
M8 M10 M12	V _{Rk,s,fi,90} [kN] 1,3 2,2 3,5	stance 90 minut M ⁰ _{Rk,s,fi,90} [Nm] 1,0 2,4 5,0	2,2 2,2 2,4 2,8 2,8	V _{Rk,s,fi,120} [kN] 1,2 1,9 2,8	0,8 2,1 4,3	2,2 2,2 2,4 2,8 2,8		
M8 M10 M12 M16	V _{Rk,s,fi,90} [kN] 1,3 2,2 3,5 6,6	1,0 2,4 5,0 12,6	2,2 2,2 2,4 2,8	V _{Rk,s,fi,120} [kN] 1,2 1,9 2,8 5,3	0,8 2,1 4,3 11,0	2,2 2,2 2,4 2,8		
M8 M10 M12 M16 M20	V _{Rk,s,fi,90} [kN] 1,3 2,2 3,5 6,6 10,3	1,0 2,4 5,0 12,6 24,6	2,2 2,2 2,4 2,8 2,8	V _{Rk,s,fi,120} [kN] 1,2 1,9 2,8 5,3 8,3	0,8 2,1 4,3 11,0 21,4	2,2 2,2 2,4 2,8 2,8		
M8 M10 M12 M16 M20 M24	V _{Rk,s,fi,90} [kN] 1,3 2,2 3,5 6,6 10,3	1,0 2,4 5,0 12,6 24,6	2,2 2,2 2,4 2,8 2,8	V _{Rk,s,fi,120} [kN] 1,2 1,9 2,8 5,3 8,3	0,8 2,1 4,3 11,0 21,4	2,2 2,2 2,4 2,8 2,8		
M8 M10 M12 M16 M20 M24 Reduced anchorage depth	V _{Rk,s,fi,90} [kN] 1,3 2,2 3,5 6,6 10,3 14,8	1,0 2,4 5,0 12,6 24,6 42,6	2,2 2,2 2,4 2,8 2,8 2,8	V _{Rk,s,fi,120} [kN] 1,2 1,9 2,8 5,3 8,3 11,9	0,8 2,1 4,3 11,0 21,4 37,0	2,2 2,2 2,4 2,8 2,8 2,8		

Concrete pryout failure: In Equation (5.6) of ETAG 001, Annex C, 5.2.3.3 the $k_{(3)}$ -factor of Table C3 and the relevant values of $N_{0Rk,c,fi}$ of Table C4 have to be considered.

Concrete edge failure: The characteristic resistance $V^0_{Rk,c,fi}$ in concrete C20/25 to C50/60 is determined by: $V^0_{Rk,c,fi} = 0.25 \times V^0_{Rk,c}$ (R30, R60, R90), $V^0_{Rk,c,fi} = 0.20 \times V^0_{Rk,c}$ (R120) with $V^0_{Rk,c}$ as initial value of the characteristic resistance in cracked concrete C20/25 under normal temperature according to ETAG 001, Annex C, 5.2.3.4.

In absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{M.fi} = 1.0$ is recommended.

UPAT Anchor bolt MAX, MAX A4, MAX C	
Performances: Characteristic values of resistance under shear loads and fire exposure (Design according to TR 020 and ETAG 001, Annex C or CEN/TS 1992-4:2009, Annex D)	Annex C 5

Table C6: Valid anchor sizes for seismic design, performance category C1, standard and reduced anchorage depth

Type of anchor / size		MAX, MAX A4, MAX C					
		М8	M10	M12	M16	M20	M24
Standard effective anchorage depth	$h_{\text{ef,sta}} \geq [mm]$	45	60	70	85	100	125
Thickness of fixture ——	$t_{fix,min} = [mm]$	0	0	0	0	0	0
	$t_{fix,max} = [mm]$	100	100	120	160	250	300
Landle of an above	$L_{min} = [mm]$	64,5	84,5	99	122	141	174
Length of anchor —	L _{max} = [mm]	167	186	221	284,5	394	477
Reduced effective anchorage depth h _{ef,red} ≥		-	40	50	65	1	-
Thickness of fixture —	$t_{fix,min} = [mm]$	-	0	0	0	-	-
Thickness of fixture —	t _{fix,max} = [mm]	25	120	140	180	-	-
Longth of anchor	$L_{min} = [mm]$	## I	64,5	79	102	-	-
Length of anchor –	L _{max} = [mm]	-	186	221	284,5	-	-

Table C7: Valid anchor sizes for seismic design, performance category C2, standard and reduced anchorage depth

Type of anchor / size		MAX, MAX A4, MAX C 1)					
		M8	M10	M12	M16	M20	M24
Standard effective anchorage depth	$h_{\text{ef,sta}} \geq [mm]$	-	60	70	85	100	-
Thickness of fixture —	$t_{fix,min} = [mm]$	-	0	0	0	0	-
	$t_{fix,max} = [mm]$	-	100	120	160	250	-
Landbar and a color	L _{min} = [mm]	-	84,5	99	122	141	-
Length of anchor –	L _{max} = [mm]	-	186	221	284,5	394	-
Reduced effective anchorage depth	$h_{\text{ef,red}} \geq [mm]$	-	40	50	65	-	-
Thickness of fixture —	$t_{fix,min} = [mm]$	-	0	0	0	-	-
THICKIESS OF HARME	$t_{fix,max} = [mm]$	-	120	140	180	-	-
Longth of anchor	L _{min} = [mm]	-	64,5	79	102	-	-
Length of anchor —	L _{max} = [mm]	-	186	221	284,5	-	-

¹⁾ MAX C: Only valid for cold-formed version (see A1)

UPAT Anchor bolt MAX, MAX A4, MAX C	
Performances: Valid sizes in cracked concrete for seismic design	Annex C 6

Table C8: Characteristic values of tension and shear resistance for standard- and reduced anchorage depth under seismic action

(Design according to TR 045: Performance category C1)

(Design according to TR 045: Performance category C1)

Type of anchor / size		MAX, MAX A4, MAX C						
		М8	M10	M12	M16	M20	M24	
Steel failure for standard anchorage depth								
Characteristic resistance tension	h _{ef,sta}	N _{Rk,s,C1} [kN]	16,0	27,0	41,0	66,0	111,0	150,0
load C1	h _{ef,red.}	NRk,s,C1 [KIN]	-	27,0	41,0	86,0	-	-
Partial safety factor		γ _{Ms,C1} 1) [-]			,	1,5		
Pullout failure for standard anch	norage d	epth						
Characteristic resistance tension	h _{ef,sta}	N (LNI)	4,6	۰ ۸	16.0	20.2	36,0	50,3
load in cracked concrete C1	h _{ef,red.}	$N_{Rk,p,C1}$ [kN]		8,0	16,0	28,2	-	-
Installation safety factor		γ _{2,C1} [-]			•	1,0		
Steel failure without lever arm for	or standa	ard anchorage	e depth					
Characteristic resistance shear	h _{ef,sta}	V _{Rk,s,C1} [kN]	11	47	07	47	56	69
load C1	h _{ef,red.}	V _{Rk,s,C1} [KN]	-	17	27	47	-	-
Partial safety factor		γ _{Ms,C1} 1) [-]			1	,25		

Table C9: Characteristic values of tension and shear resistance for standard- and reduced anchorage depth under seismic action

(Design according to TR 045: Performance category C2)

Type of anchor / size		MAX, MAX A4, MAX C ²⁾						
		М8	M10	M12	M16	M20	M24	
Steel failure for standard ancho	rage depth							
Characteristic resistance tension load C2	$\frac{h_{\text{ef,sta}}}{h_{\text{ef,red.}}} \ N_{\text{Rk,s,C2}} \text{[kN]}$	-	27	41	66	111	-	
Partial safety factor	γ _{Ms,C2} 1) [-]			1	,5			
Pullout failure for standard ancl	Pullout failure for standard anchorage depth							
Characteristic resistance tension	h c l		5,1	7,4	21,5	30,7		
load in cracked concrete C2	h _{ef,red.}	-	2,7	4,4	16,4	-	-	
Installation safety factor	γ _{2,C2} [-]			1	,0			
Steel failure without lever arm for	Steel failure without lever arm for standard anchorage depth							
Characteristic resistance shear	h s V _{Rk,s,C2} [kN]		10,0	17,4	27,5	39,9		
load C2 $h_{ef,re}$	h _{ef,red.} V _{Rk,s,C2} [KN]	-	7,0	12,7	22,0	-	-	
Partial safety factor	γ _{Ms,C2} 1) [-]	¹⁾ [-] 1,25						

¹⁾ In absence of other national regulations

MAX C: Only valid for cold-formed version (see A1)

UPAT Anchor bolt MAX, MAX A4, MAX C	
Performances: Characteristic values of resistance under tension and shear loads under seismic action	Annex C 7

Table C10: Displacements due to tension loads for standard and reduced anchorage depth (Design method A, according to ETAG 001, Annex C or CEN/TS 1992-4:2009)

Type of anchor / size			MAX, MAX A4, MAX C					
			М8	M10	M12	M16	M20	M24
Values for standard anchorage depth								
Tension load in cracked concrete	N	[kN]	2,3	4,2	7,5	13,2	16,4	22,9
Displacement	δ_{N0}	[mm]	0,5	0,5	0,7	1,0	1,2	1,2
Displacement	$\delta_{\text{N}\infty}$	[mm]		1	1,4	1,5		
Tension load in non - cracked concrete	N	[kN]	4,2	7,5	11,7	18,7	23,3	32,5
Displacement	δ_{N0}	[mm]	0,3	0,3	0,5	0,7	1,2	1,2
Displacement	$\delta_{\text{N}\infty}$	[mm]	1,2				1,4	1,5
Values for reduced anchorage depth								
Tension load in cracked concrete	N	[kN]	-	4,2	6,0	9,0	-	-
Displacement	δ_{N0}	[mm]	-	0,5	0,7	1,0	-	-
Displacement	$\delta_{\text{N}\infty}$	[mm]	1,2				-	-
Tension load in non - cracked concrete	N	[kN]	-	5,7	8,5	12,6	-	-
Dicalgoament	δ_{N0}	[mm]	-	0,3	0,5	0,7	-	-
Displacement	$\delta_{\text{N}\infty}$	[mm]	1,2				-	-

Table C11: Displacements due to shear loads for standard and reduced anchorage depth (Design method A, according to ETAG 001, Annex C or CEN/TS 1992-4:2009)

Type of anchor / size		MAX, MAX A4, MAX C							
		M8	M10	M12	M16	M20	M24		
Shear load in cracked and non-cracked concrete	V	[kN]	6,9	11,4	16,9	31,4	39,4	48,5	
Displacement	δ_{V0}	[mm	2,4	4,2	4,5	3,0	3,6	3,6	
	$\delta_{\text{V}\infty}$	[mm	3,6	6,3	6,8	4,5	5,4	5,4	

UPAT Anchor bolt MAX, MAX A4, MAX C	
Performances: Displacements under tension and shear loads under seismic action	Annex C 8

Table C12: Displacements due to tension loads for standard and reduced anchorage depth (Design according to TR 045: Performance category C2)

Type of anchor / size		MAX, MAX A4, MAX C						
		М8	M10	M12	M16	M20	M24	
Values for standard anchorage dept	h							
Displacement DLS	$\delta_{\text{N,C2 (DLS)}}$	[mm]	-	2,7	4,4	4,4	5,6	
Displacement ULS	$\delta_{\text{N.C2 (ULS)}}$	[mm]	-	11,5	13,0	12,3	14,4	-
Values for reduced anchorage depth	1							
Displacement DLS	δ _{N,C2 (DLS)}	[mm]	-	2,7	4,4	4,4	-	-
Displacement ULS	$\delta_{\text{N,C2 (ULS)}}$	[mm]	-	11,5	13,0	12,3	-	-

Table C13: Displacements due to shear loads for standard and reduced anchorage depth (Design according to TR 045: Performance category C2)

Type of anchor / size		MAX, MAX A4, MAX C							
		М8	M10	M12	M16	M20	M24		
Values for standard anchorage dep	oth								
Displacement DLS	δ _{V,C2 (DLS)}	[mm]	-	4,1	4,4	4,3	4,8	-	
Displacement ULS	δ _{V,C2 (ULS)}	[mm]	-	6,2	7,8	8,1	11,2	-	
Values for reduced anchorage dept	th								
Displacement DLS	$\delta_{\text{V,C2 (DLS)}}$	[mm]	-	3,6	4,7	5,5	-	-	
Displacement ULS	δ _{V,C2 (ULS)}	[mm]	-	5,0	7,5	10,1	-	-	

UPAT Anchor bolt MAX, MAX A4, MAX C	
Performances: Displacements under tension and shear loads under seismic action	Annex C 9