

ΕN

DECLARATION OF PERFORMANCE

DoP 0203

for Upat Express Anchor IMC (Mechanical anchor for use in concrete)

1. Unique identification code of the product-type: DoP 0203

2. Intended use/es: Post-installed fastening in uncracked concrete. See appendix, especially annexes

Upat Vertriebs GmbH, Bebelstraße 11, 79108 Freiburg im Breisgau, Germany 3. Manufacturer:

4. Authorised representative:

5. System/s of AVCP: 1

EAD 330232-01-0601, (Edition 12/ 2019) 6. European Assessment Document:

European Technical Assessment: ETA-10/0169; 2020-07-14

Technical Assessment Body: DIBt- Deutsches Institut für Bautechnik 1343 MPA Darmstadt / 2873 TU Darmstadt Notified body/ies:

7. Declared performance/s:

Mechanical resistance and stability (BWR 1)

Characteristic resistance to tension load (static and Annex C1 Resistance to steel failure: E_S= 210 000 MPa

quasi-static loading): Resistance to pull- out failure: Annex C1

> Resistance to concrete cone failure: Annex C1 k_{cr,N}= NPD

Robustness: Annex C1

Annex C3 Minimum edge distance and spacing: Edge distance to prevent splitting under load: Annex C1

Resistance to steel failure (shear load): Characteristic resistance to shear load (static and

Annex C2 quasi-static loading), Method A: Resistance to pry-out failure: Annex C2

NPD Characteristic resistance and displacements for Resistance to tension load, displacements,

seismic performance categories C1 and C2: category C1:

Resistance to tension load, displacements, NPD

category C2:

Resistance to shear load, displacements, category NPD

> Resistance to shear load, displacements, category NPD

> NPD

NPD

NPD

Factor for annular gap:

Method B: Method C: NPD

Displacements and durability: Displacements under static and quasi-static Annex C3

Durability: Annexes A4, B1

Safety in case of fire (BWR 2)

Characteristic Resistance for simplified design:

Reaction to fire: Class (A1) Resistance to fire:

Fire resistance to steel failure (tension load): NPD Fire resistance to pull-out failure (tension load): NPD Fire resistance to steel failure (shear load):

Fischer DATA DOP_ECs_V27.xlsm 1/2

8. Appropriate Technical Documentation and/or Specific Technical Documentation:

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Thilo Pregartner, Dr.-Ing.
Tumlingen, 2020-07-27

ppa. The Mx

Peter Schillinger, Dipl.-Ing.

i.V. P. So

This DoP has been prepared in different languages. In case there is a dispute on the interpretation the English version shall always prevail.

The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Fischer DATA DOP_ECs_V27.xlsm 2/2

Specific Part

1 Technical description of the product

The Upat Express Anchor IMC is an anchor made of zinc plated, hot-dip galvanised or stainless steel which is placed into a drilled hole and anchored by torque-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

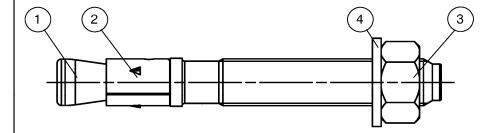
The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

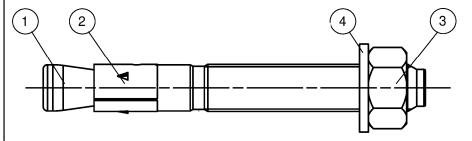
3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 3, C 1
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 2
Displacements (static and quasi-static loading)	See Annex C 3
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed
Durability	See Annex B 1

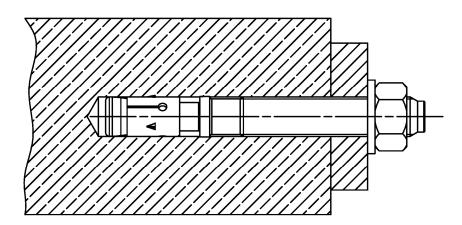
3.2 Safety in case of fire (BWR 2)


Essential characteristic	Performance				
Reaction to fire	Class A1				
Resistance to fire	No performance assessed				

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base


In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: [96/582/EC].

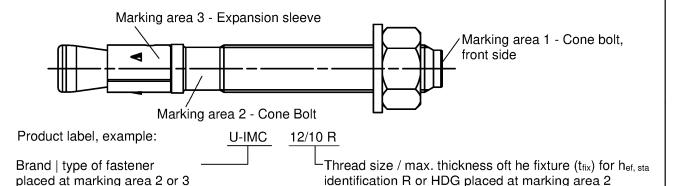
The system to be applied is: 1


Cone bolt manufactured by cold - forming:

Cone bolt manufactured by turning:

- ① Cone bolt (cold formed or turned)
- ② Expansion sleeve
- 3 Hexagon nut
- 4 Washer

(Fig. not to scale)


Upat Express Anchor IMC

Product description Installed condition

Annex A 1

Appendix 2/11

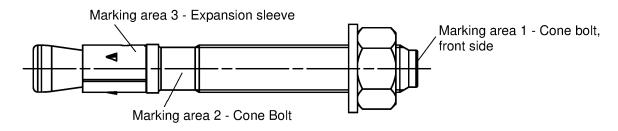

IMC for use with standard and reduced anchorage depth (hef, sta and hef, red)

Table A2.1: Letter-code on marking area 1 and maximum thickness of fixture t_{fix} [mm]:

marking		Α	В	С	D	Е	F	G	Н		K	L	М	N	0	Р	R	S	Τ	U	٧	W	Χ	Υ	Ζ
max. t _{fix} for h _{ef, sta}	M6-M20	5	10	15	20	25	30	35	40	45	50	60	70	80	90	100	120	140	160	180	200	250	300	350	400
	M8, M10	15	20	25	30	35	40	45	50	55	60	70	80	90	100	110	130	150	170	190	210	260	310	360	410
max. t _{fix}	M12, M16	20	25	30	35	40	45	50	55	60	65	75	85	95	105	115	135	155	175	195	215	265	315	365	415
for h _{ef, red}	M20	30	35	40	45	50	55	60	65	70	75	85	95	105	115	125	145	165	185	205	225	275	325	375	425

IMC K for use with reduced anchorage depth only (hef, red):

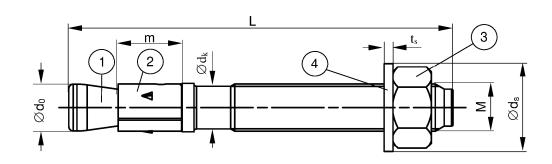

Product label, example: U-IMC 12/10 K R Brand | type of fastener Thread size / max. thickness oft he fixture (t_{fix}) placed at marking area 2 or 3 identification K for hef. red identification R or HDG placed on marking area 2

Table A2.2: Letter-code on marking area 1 and maximum thickness of fixture t_{fix} [mm]:

Markierung	-A-	-B-	-C-	-D-	-E-	-F-	-G-	-H-	- -	-K-	-L-	-M-	-N-	-0-	-P-	-R-	-S-	-T-	-U-	-V-	-W-	-X-	-Y-	-Z-
max. t _{fix} for h _{ef, red} M8-M20	5	10	15	20	25	30	35	40	45	50	60	70	80	90	100	120	140	160	180	200	250	300	350	400

Identification for hef, red is the letter-code between 2 hyphen

(Fig. not to scale) Upat Express Anchor IMC Annex A 2 **Product description** Product label and letter code Appendix 3/11

Table A3.1: Anchor dimensions [mm]

Part	Designation					IMC,	IMC R		
Fait	Designation			М6	M8	M10	M12	M16	M20
		М	_	M6	M8	M10	M12	M16	M20
1	Cone bolt	$\emptyset d_0$		5,9	7,9	9,9	11,9	15,9	19,6
		\emptyset d _k	=	5,2	7,1	8,9	10,8	14,5	18,2
2	Expansion sleeve	m		10	11,5	13,5	16,5	21,5	33,5
3	Hexagon nut	SW	-	10	13	17	19	24	30
4	Washer	ts		1,0	1,4	1,8	2,3	2,7	2,7
4	washer 	Ø ds	- ≥	11,5	15	19	23	29	36
Thickness of	fixturo	t _{fix}	<u>></u>	0	0	0	0	0	0
Triickiiess ori	hickness of fixture		<u></u>	200	200	250	300	400	500
Length of fast	onor	L_{min}		45	56	71	86	120	139
Lenginonasi	ener	L _{max}	=	245	261	316	396	520	654

(Fig. not to scale)

Upat Express /	Anchor	IMC
----------------	--------	-----

Product description Dimensions

Table A4.1: Materials IMC (zinc plated ≥ 5μm, ISO 4042:2018)

Part	Designation	Material
1	Cone bolt	Cold form steel or free cutting steel
2	Expansion sleeve	Cold strip, EN 10139:2016 1)
3	Hexagon nut	Steel, property class min. 8, EN ISO 898-2:2012
4	Washer	Cold strip, EN 10139:2013

¹⁾ Optional stainless steel EN 10088:2014

Table A4.2: Materials IMC HDG (hot-dip galvanised ≥ 50µm, ISO 10684: 2004 ²⁾)

Part	Designation	Material
1	Cone bolt	Cold form steel or free cutting steel
2	Expansion sleeve	Stainless steel EN 10088:2014
3	Hexagon nut	Steel, property class min. 8, EN ISO 898-2:2012
4	Washer	Cold strip, EN 10139:2016

¹⁾ Alternative method sherardized \geq 50 μ m, EN 13811:2003

Table A4.3: Materials IMC R

Part	Designation	Material
1	Cone bolt	Stainless steel EN 10088:2014
2	Expansion sleeve	Stainless steel EN 10088:2014
3	Hexagon nut	Stainless steel EN 10088:2014 ISO 3506-2: 2009; property class min. 70
4	Washer	Stainless steel EN 10088:2014

Upat Express Anchor IM

Specifications of intended use

Anchorages subject to:

Express A	nchor IMC, IM	M6 ¹⁾	M8 ¹⁾	M10	M12	M16	M20				
	Steel	Zinc plated			/	′					
<u>'ā</u>	Sieei	Hot-dip galvanized HDG	_2)	✓							
Material	Stainless steel	R				•					
Static and	quasi-static lo				1						
Reduced a	anchorage dep	_2)			/						
Uncracked				/							

¹⁾ Use of IMC 6 (gvz/R) and IMC 8 (gvz/HDG/R) with h_{ef} = 30mm restricted to anchoring of structural components which are statically indeterminate

Base materials:

 Reinforced or unreinforced normal concrete without fibres of strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016

Use conditions (Environmental conditions):

Structures subject to dry internal conditions:

IMC, IMC HDG

 For all other conditions according to EN 1993-1-4:2015-10 corresponding to corrosion resistance class CRC III

IMC R

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored.
 The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Design of fastenings according to EN 1992-4:2018 and TR 055

Upat Express	Anchor	IMC
--------------	--------	-----

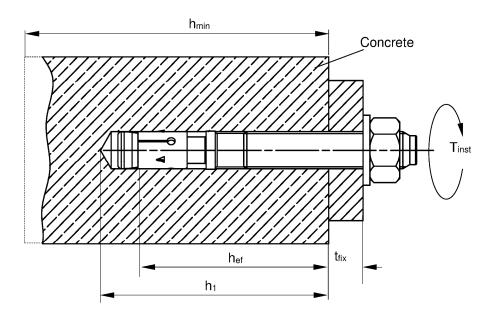

²⁾ Anchor type not part of the assessment

Table B2.1: Installation parameters

Type of anchor / size IMC, IMC	R		М6	M8	M10	M12	M16	M20
Nominal drill hole diameter	d ₀ =		6	8	10	12	16	20
Cutting diameter of drill bit	d _{cut} ≤	_	6,45	8,45	10,45	12,50	16,50	20,55
Standard anchorage depth	$h_{\text{ef,sta}} =$	_	30 ¹⁾	40	50	65	80	105
Reduced anchorage depth	$h_{\text{ef,red}} =$	- [mm]	_2)	30 ¹⁾	40	50	65	80
Standard drill hole depth	$h_{1,sta}\geq$		40	56	68	85	104	135
Reduced drill hole depth	$h_{1,\text{red}} \geq$	_	_2)	46 ¹⁾	58	70	89	110
Diameter of clearance hole in the fixture	d _f ≤		7	9	12	14	18	22
Required torque moment IMC (zinc plated)	_		4	15	30	50	100	200
Required torque moment IMC (hot-dip galvanized)	T _{inst} =	[Nm]	_3)	15	30	40	70	200
Required torque moment IMC R	_		4	10	20	35	80	150

¹⁾ Use restricted to anchoring of structural components which are statically indeterminate

³⁾ Anchor type not part of the assessment

hef = Effective embedment depth

 t_{fix} = Thickness of the fixture

 $\begin{array}{ll} h_1 &=& Depth \ of \ drill \ hole \ to \ deepest \ point \\ h_{min} &=& Minimum \ thickness \ of \ concrete \ member \end{array}$

 $T_{inst} = Required setting torque$

(Fig. not to scale)

Upat Express Anchor IMC	
Intended Use	Annex B 2
Installation parameters	Appendix 7/ 11

²⁾ No performance assessed

Installation instructions

- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener
- Checking before placing the fastener to ensure that the strength class of the concrete in which the fastener is to be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply
- · Check of concrete being well compacted, e.g. without significant voids
- Hammer or hollow drilling
- Drill hole created perpendicular +/- 5° to concrete surface, positioning without damaging the reinforcement
- In case of aborted hole: new drilling at a minimum distance twice the depth of the aborted drill hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application

Continue with step 3, 4 and 5

Lamber 1 2 3 4 5

No.	Description								
1	Create drill hole with hammer drill	Create drill hole with hollow drill and vacuum cleaner							
2	Clean drill hole	-							
3	Set anchor								
4	Expand anchor with	prescribed installation torque T _{inst}							
5	Fini	shed installation							

Types of drills						
Hammer drill	B4889000000					
Hollow drill	Ī					

Upat Express Anchor IMC

Intended Use Installation instructions Annex B 3

Characteristic values of **tension** resistance under static and quasi-static Table C1.1: action

Type of anchor / size	М6	M8	M10	M12	M16	M20				
Steel failure for standard and reduc	ed ancho	orage depth	ı IMC							
Characteristic resistance IMC	$N_{Rk,s}$	[kN]	8,3	16,5	27,2	41,6	77,9	107		
Partial factor	γMs ¹⁾	[-]	1,5	1,4	1,4	1,4	1,5	1,5		
Steel failure for standard and reduc	ed ancho	rage depth	IMC R							
Characteristic resistance IMC R	$N_{Rk,s}$	[kN]	10,6	16,5	27,2	41,6	78	111		
Partial factor	γ _{Ms} ¹⁾	[-]	1,5	1,4	1,4	1,4	1,4	1,5		
Pullout failure for standard anchora	age depth	IMC, IMC	R							
Characteristic resistance C20/25	$N_{Rk,p}$	[kN]	64)	12,5	17,4	25,8	35,2	52,9		
Pullout failure for reduced anchora	ge depth	IMC, IMC F	}							
Characteristic resistance C20/25	$N_{Rk,p}$	[kN]	_ 5)	6 ⁴⁾	12,5	17,4	25,8	35,2		
		C25/30	1,12							
		C30/37	1,22							
Increasing factors for N _{Rk,p}	ψο	C35/45	1,32							
		C40/50	1,41							
		C45/55	1,50							
		C50/60	1,58							
Installation factor	γinst	[-]			1	,0				
Concrete cone and splitting failure	for stand	ard anchor		h IMC, IM	CR					
Effective anchorage depth	h _{ef, sta}	[mm]	304)	40	50	65	80	105		
Factor for uncracked concrete	k _{ucr,N}	[-]				,0 ²⁾				
Spacing	Scr,N					ef, sta				
Edge distance	C _{cr} ,N	— [mm]			1,5 h	ef, sta				
Spacing (splitting failure)	Scr,sp	_ [''''']	1304)	190	200	290	350	370		
Edge distance (splitting failure)	C _{cr,sp}		65 ⁴⁾	95	100	145	175	185		
Characteristic resistance to splitting	N^0 Rk,sp	[kN]				$_{\text{k,c,}} N_{\text{Rk,p}}$				
Concrete cone and splitting failure	for reduce									
Effective anchorage depth	h _{ef, red}	[mm]	_ 5)	304)	40	50	65	80		
Factor for uncracked concrete	K _{ucr,N}	[-]				,0 ²⁾				
Spacing	S _{cr,N}					ef, red				
Edge distance	C _{cr,N}	— [mm]				lef, red				
Spacing (splitting failure)	S _{cr,sp}	_ [''''']	_5)	190 ⁴⁾	200	290	350	370		
Edge distance (splitting failure)	C _{cr,sp}		_ 5)	95 ⁴⁾	100	145	175	185		

¹⁾ In absence of other national regulations

Upat Express Anchor IMC

Performances

Characteristic values of tension resistance

Annex C 1

 $^{^{2)}}$ Based on concrete strength as cylinder strength $^{3)}\,N^0_{\text{Rk,c}}$ according to EN 1992-4:2018

⁴⁾ Use restricted to anchoring of structural components which are statically indeterminate

⁵⁾ No performance assessed

Type of anchor / size				M6	M8	M10	M12	M16	M20
Installation factor		γinst	[-]			1,	,0		
Steel failure without lever arm	for stand	ard and re	duced an	chorage	depth				
IMC	IMC	1.70	FL-N 17	6,02)	13,3	21,0	31,3	55,1	67
Characteristic resistance	IMC R	— V ⁰ Rk,s	[kN]	5,32)	12,8	20,3	27,4	51	86
Steel failure with lever arm for	standard	anchorag	e depth						
Characteristic banding reserve	IMC	— M ⁰ Rk,s	[Nm]	9,42)	26,2	52,3	91,6	232,2	422
Characteristic bending moment	IMC R	─ IVI°Rk,s	נואווון	82)	26	52	85	216	454
Steel failure with lever arm for	reduced	anchorage	edepth						
Characteristic bending memort	IMC	— M ⁰ Rk,s	[Nm]	_3)	19,9 ²⁾	45,9	90,0	226,9	349
Characteristic bending moment	IMC R	— IVI°Rk,s	נואווון	-	21 ²⁾	47	85	216	353
Partial factor steel failure		γMs ¹⁾	_ []			1,	25		
Factor for ductility		k ₇	— [- <u>]</u>	1,0					
Concrete pryout failure for sta	ndard and	chorage de	epth IMC,	IMC R					
Factor for pryout failure		k ₈	[-]	1,4	1,8	2,1	2,3	2,3	2,3
Concrete pryout failure for rec	luced anc	horage de	pth IMC, I	MC R					
Factor for pryout failure		k ₈	[-]	_3)	1,8	2,1	2,3	2,3	2,3
Concrete edge failure for stan	dard anch	orage dep	oth IMC, IN	/IC R					
Effective length of anchor		$I_{f,sta}$	[mm]	302)	40	50	65	80	105
Effective diameter of anchor		d _{nom}	— [mm]	6	8	10	12	16	20
Concrete edge failure for redu	ced anch	orage dep	th IMC, IM	C R					
Effective length of anchor		$I_{f,red}$	_ [mm]	_3)	302)	40	50	65	80
Effective diameter of anchor		d _{nom}	— [mm]	_3)	8	10	12	16	20

Upat Express Anchor IMC	
Performances Characteristic values of shear resistance	

¹⁾ In absence of other national regulations 2) Use restricted to anchoring of structural components which are statically indeterminate 3) No performance assessed

Table C3.1: Minimum thickness of concrete members, minimum spacing and minimum edge distance

	Type of anchor / size IMC, IM	IC R		М6	М8	M10	M12	M16	M20
	Effective anchorage depth	h _{ef, sta}		30 ²⁾	40	50	65	80	105
lard rage th	Minimum thickness of member	h _{min}		100	100	100	120	160	200
Standard anchorage depth	Minimum spacing	Smin	[mm] 	40	40	50 (70¹))	70	90 (120 ¹⁾)	120
, 0	Minimum edge distance	Cmin		40	40 (45 ¹⁾)	50 (55 ¹⁾)	70	90 (80¹))	120
	Effective anchorage depth	h _{ef, red}		_3)	302)	40	50	65	80
uced orage pth	Minimum thickness of member	h _{min}		_3)	100	100	100	120	160
Reduced anchorage depth	Minimum spacing	Smin	[mm]	_3)	40 (50 ¹⁾)	50	70	90	120 (140 ¹⁾)
- a	Minimum edge distance	Cmin		_3)	40 (45 ¹⁾)	80	100	120	120

¹⁾ Values for IMC R

Table C3.2: Displacements under static and quasi static tension loads

Type of anchor / size IMC, IMC R			M6	M8	M10	M12	M16	M20	
Standard anchorage depth	h _{ef, sta}	[mm]	30	40	50	65	80	105	
Tension load C20/25	N	[kN]	2,8	6,1	8,5	12,6	17,2	25,8	
Dianlacamenta	δ_{N0}	_	1,9	0,6	0,9	1,5 (1,9 ¹⁾)	1,8	1,8 (2,01)	
Displacements	δ _{N∞}	[mm]	mm] 3,1 (2,7 ¹⁾)						
Reduced anchorage depth	h _{ef, red}		_2)	30	40	50	65	80	
Tension load C20/25	N	[kN]	_2)	2,8	6,1	8,5	12,6	17,2	
Diantagana	δνο	- [mm]	/	0,4	0,7	0,7	0,9	1,0	
Displacements	δ _{N∞}	- [mm]			1	,6 (1,7 ¹⁾)			

¹⁾ Values for IMC R

Table C3.3: Displacements under static and quasi static shear loads

Type of anchor / size IMC, IMC R			М6	M8	M10	M12	M16	M20
Shear load IMC	٧	[kN]	3,4	7,6	12,0	17,9	31,5	38,2
Displacements IMC	δνο	[mm]	0,7	1,5	1,6	2,0	3,0	2,6
	δν∞	— [mm]	1,1	2,3	2,4	3,0	4,5	3,9
Shear load IMC R	٧	[kN]	3,0	7,3	11,6	15,7	29,1	49,0
Displacements IMC R	δνο	_ [mm]	1,5	1,4	2,1	2,6	2,7	4,6
	δν∞	— [mm]	2,3	2,2	3,2	3,9	4,1	7,0

U	pat	Express	Anchor	IMC
---	-----	---------	--------	-----

Performances

Minimum thickness of concrete members, minimum spacing and minimum edge distance Displacements due to tension and shear loads

Annex C 3

Appendix 11/11

²⁾ Use restricted to anchoring of structural components which are statically indeterminate

³⁾ No performance assessed

²⁾ No performance assessed