

DECLARATION OF PERFORMANCE

DoP 0332

DoP 0332 for Upat UKA3 Plus (Bonded fastener for use in concrete)				EN
1. Unique identification code of the product-type:	DoP 0332			
2. Intended use/es:	Post-installed fastening in cracked or uncracked concrete see appendix, especially annexes B1- B7.			
3. <u>Manufacturer:</u>	Upat Vertriebs GmbH, Bebelstraße 11, 79108 Freiburg im Brei	sgau, Germany		
4. Authorised representative:	-			
5. System/s of AVCP:	1			
6. <u>European Assessment Document:</u> European Technical Assessment: Technical Assessment Body: Notified body/ies:	EAD 330499-01-0601, Edition 04/2020 ETA-17/0197; 2023-01-30 DIBt- Deutsches Institut für Bautechnik 2873 TU Darmstadt			
 <u>Declared performance/s:</u> <u>Mechanical resistance and stability (BWR 1)</u> <u>Characteristic resistance to tension load (static an</u> Resistance to steel failure: Annex C2 Resistance to combined pull- out and concrete com Resistance to concrete cone failure: Annex C3 		ψ^0_{sus} = NPD	τ _{Rk,100} = NPD	
Edge distance to prevent splitting under load: Anne Robustness: Annexes C3-C5 Maximum installation torque: Annexes B3, B4 Minimum edge distance and spacing: Annexes B3,				
Characteristic resistance to shear load (static and Resistance to steel failure: Annexes C1, C2 Resistance to pry-out failure: Annex C3 Resistance to concrete edge failure: Annex C3	quasi-static loading):			
Displacements under short-term and long-term loa Displacements under short-term and long-term load	-			
Characteristic resistance and displacements for se Resistance to tension load, displacements, categor Resistance to tension load, displacements, categor Resistance to shear load, displacements, category Resistance to shear load, displacements, category Factor annular gap: NPD	y C1: NPD y C2: NPD C1: NPD			
Hygiene, health and the environment (BWR 3) Content, emission and/or release of dangerous sub	stances: NPD			
8. <u>Appropriate Technical Documentation and/or</u> <u>Specific Technical Documentation:</u>	-			
The performance of the product identified above is in conf Regulation (EU) No 305/2011, under the sole responsibili	ormity with the set of declared performance/s. This declaration of per ty of the manufacturer identified above.	rformance is issued	l, in accordance with	ı
Signed for and on behalf of the manufacturer by:	f.Z.			

Dr.-Ing. Oliver Geibig, Managing Director Business Units & Engineering Tumlingen, 2023-02-13

Jürgen Grün, Managing Director Chemistry & Quality

This DoP has been prepared in different languages. In case there is a dispute on the interpretation the English version shall always prevail.

The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Specific Part

1 Technical description of the product

The Upat UKA3 Plus is a bonded anchor for use in concrete consisting of a capsule Upat UKA3 Plus and a steel element according to Annex A2.

The capsule Upat UKA3 Plus is placed in the hole and the steel element is driven by machine with simultaneous hammering and turning.

The element is anchored via the bond between steel element, chemical mortar and concrete. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

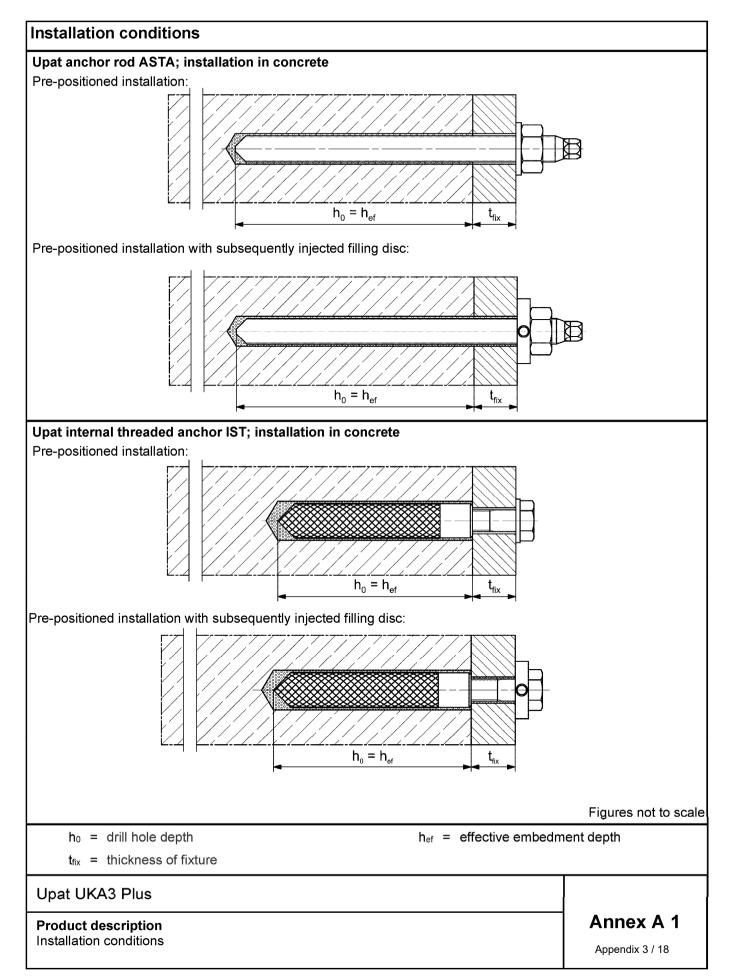
The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

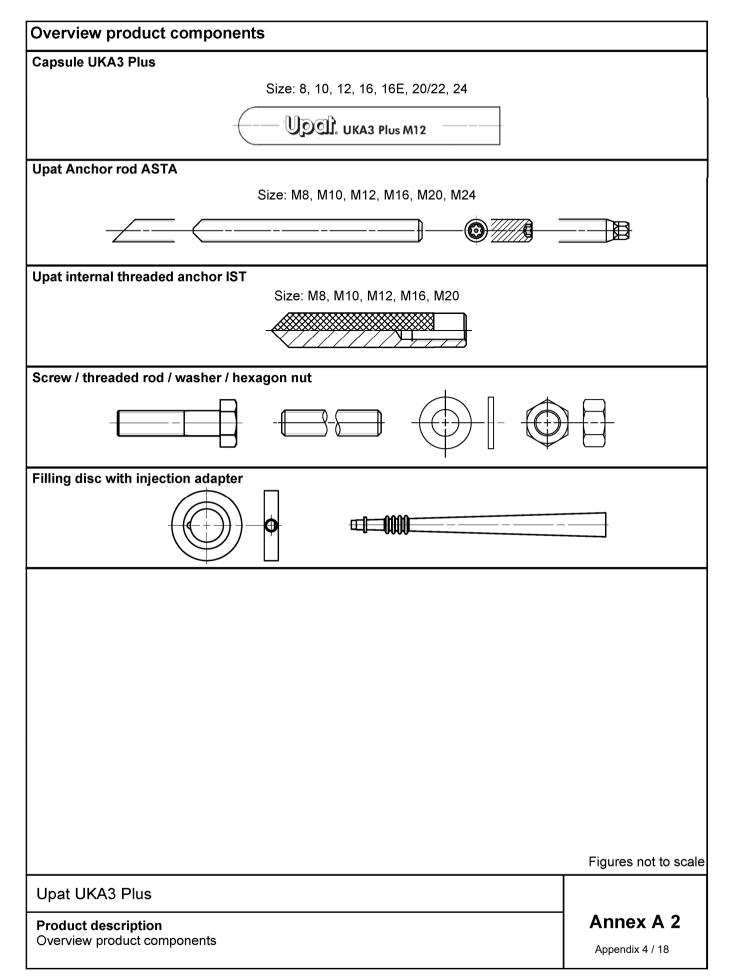
The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 3 and B 4, C 1 to C 5
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 to C 3
Displacements under short-term and long-term loading	See Annex C 6
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed


3.2 Hygiene, health and the environment (BWR 3)


Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Γaιι	Designation		Material	
1	Capsule UKA3 Plus		Mortar, hardener, filler	
		Steel	Stainless steel R	High corrosion resistant steel HCR
	Steel grade	zinc plated	acc. to EN 10088-1:2014 Corrosion resistance class CRC III acc. to EN 1993-1-4: 2006+A1:2015	acc. to EN 10088-1:2014 Corrosion resistance clas CRC V acc. to EN 1993-1-4: 2006+A1:207
2	Upat anchor rod ASTA	Property class 4.8, 5.8 or 8.8; EN ISO 898-1:2013 zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 μm EN ISO 10684:2004+AC:2009 f _{uk} ≤ 1000 N/mm ²	Property class 50, 70 or 80 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462 EN 10088-1:2014 f _{uk} ≤ 1000 N/mm ²	Property class 50 or 80 EN ISO 3506-1:2020 or property class 70 with f _y k= 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2014 f _{uk} ≤ 1000 N/mm ²
			Fracture elongation $A_5 > 8 \%$,	
3	Washer ISO 7089:2000	zinc plated ≥ 5 µm, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanized ≥ 40 µm EN ISO10684:2004+AC:2009	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014
4	Hexagon nut	Property class 4, 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised≥ 40 μm EN ISO10684:2004+AC:2009	Property class 50, 70 or 80 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 50, 70 or 80 EN ISO 3506-1:2020 1.4565; 1.4529 EN 10088-1:2014
5	Upat internal threaded anchor IST	Property class 5.8 ISO 898-1:2013 zinc plated ≥ 5 µm, ISO 4042:2018/Zn5/An(A2K)	Property class 70 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 70 EN ISO 3506-1:2020 1.4565; 1.4529 EN 10088-1:2014
6	Commercial standard screw or threaded rod for internal threaded anchor IST	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated \geq 5 µm, ISO 4042:2018/Zn5/An(A2K) fracture elongation $A_5 > 8 \%$	Property class 70 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014 fracture elongation A ₅ > 8 %	Property class 70 EN ISO 3506-1:2020 1.4565; 1.4529 EN 10088-1:2014 fracture elongation A ₅ > 8 %
7	filling disc	zinc plated ≥ 5 µm, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 µm EN ISO10684:2004+AC:2009	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014

Specifications of	intended use par	t 1			
Table B1.1:Ov	erview use and pe	erformance cate	egories		
Fastenings subject to			UKAS	B Plus with …	
		Upat and AS		Upat internal th	readed anchor T
Hammer drilling with standard drill bit	6 6666666666		all s	sizes	
Hammer drilling with hollow drill bit (fischer "FHD", Heller "Duster Expert"; Bosch "Speed Clean"; Hilti "TE-CD, TE-YD", DreBo "D-Plus", DreBo "D-Max")	Ī	Nominal drill (d₀) 12 mm		all s	izes
Static and quasi static	uncracked concrete	all sizes		all sizes	
loading, in	cracked concrete	M10, M12, M16, M20, M24	Tables: C1.1, C3.1,		Tables: C2.1, C3.1,
UseI1	dry or wet concrete	all sizes	C4.1, C6.1	all sizes	C5.1, C6.2
category 2	water filled hole	M12, M16, M20, M24		M8, M10, M16	
Seismic performance category	C1	_1 _1)))
Installation direction		D3 (downwa		and upwards (e.g lation)	. overhead)
Installation temperature			T _{i,min} =-15 °C to	• T _{i,max} = +40 °C	
	Temperature range	-40 °C to +40 °C		rm temperature +4 m temperature +2	
In-service temperature	Temperature range	-40 °C to +80 °C		rm temperature +8 m temperature +5	
	Temperature range	-40 °C to +120 °		rm temperature + m temperature +7	
¹⁾ No performance as	ssessed				
Upat UKA3 Plus					
Intended Use Specifications part 1					nnex B 1 opendix 6 / 18

Specifications of intended use part 2

Base materials:

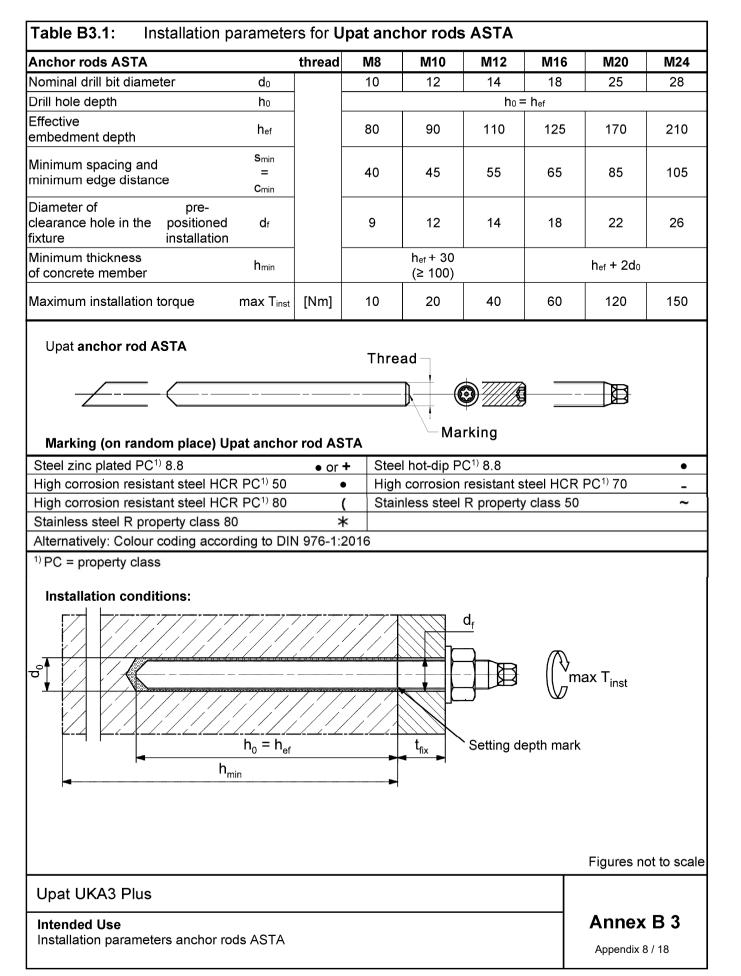
 Compacted reinforced or unreinforced normal weight concrete without fibres of strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016

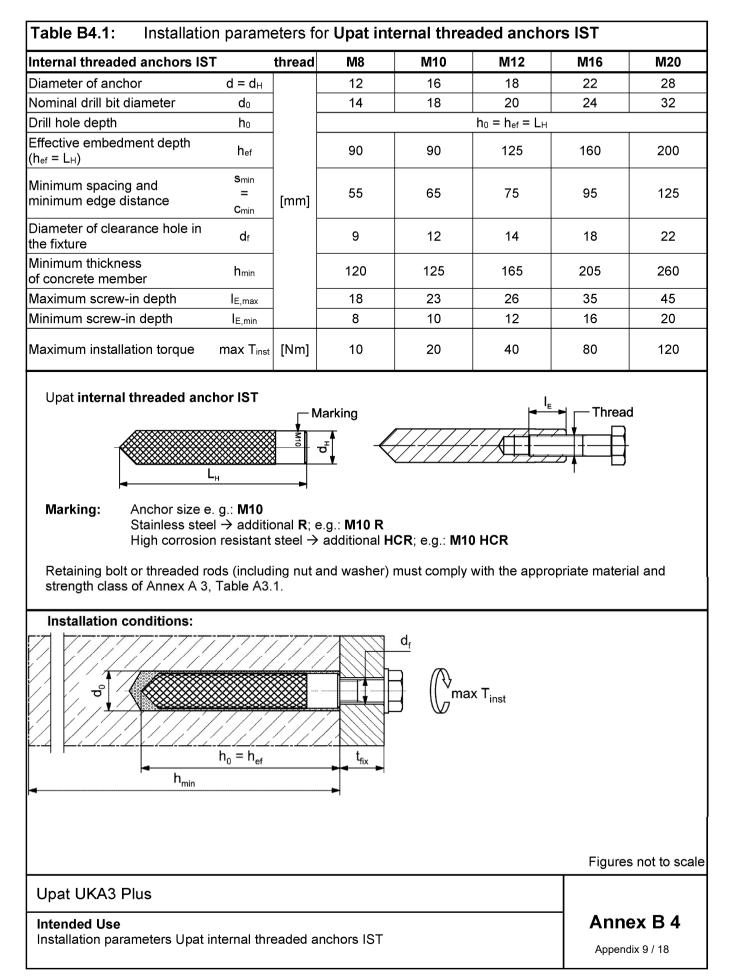
Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- For all other conditions according to EN1993-1-4:2006+A1:2015 corresponding to corrosion resistance classes to Annex A 3 Table 3.1.

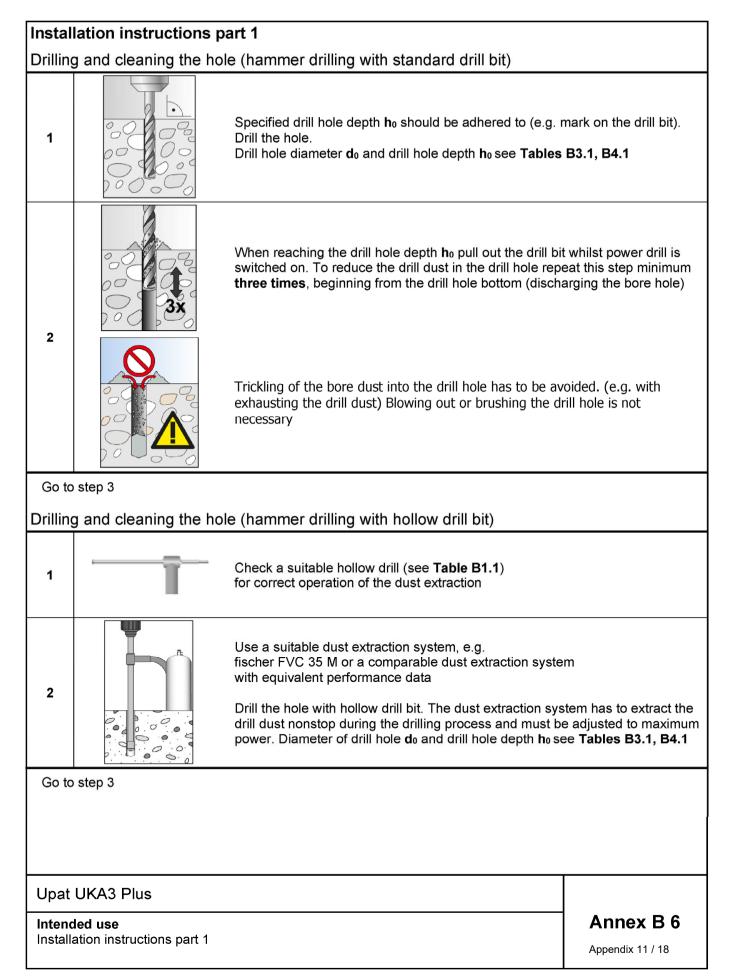
Design:

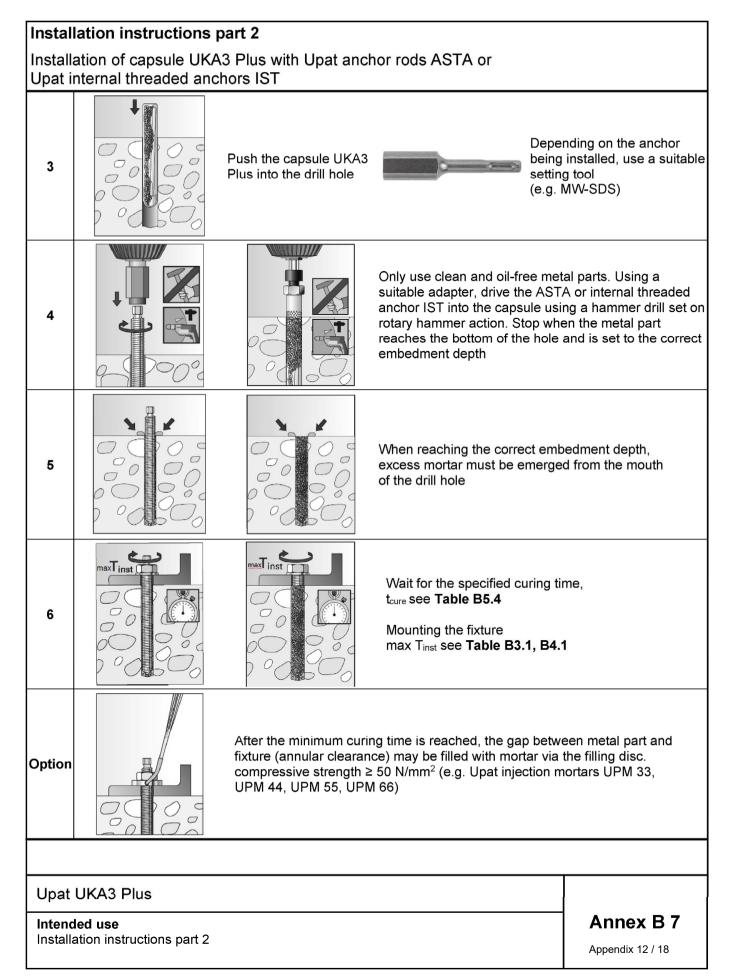
- Fastenings are designed under the responsibility of an engineer experienced in fastenings and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to reinforcement or to supports, etc.).
- Fastenings are designed in accordance with: EN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018.


Installation:


- Fastener installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Fastening depth should be marked and adhered to installation.
- · Overhead installation is allowed (necessary equipment see installation instruction).

Upat UKA3 Plus


Intended Use Specifications part 2 Annex B 2


Appendix 7 / 18

Capsule UKA3 Plus	8	10	12	16	16 E	20/22	24
Capsule d _P diameter [mm]	9,0	10,5	12,5	1	6,5	2	3,0
Capsule L _P	85	90	97	95	123	160	190
-		-Upcl	UKA3 Plus M	12			
	←		Lp		— >		
Table B5.2: Assig	gnment of	-	ule UKA3 I M10		M16		
Effective	h [mage]	M8		M12		M20	M24
embedment depth	h _{ef} [mm]	80	90	110	125	170	210
Related capsule UKA3 PI		8	10	12	16	20/22	24
	nment of i or IST	resin caps	ule UKA3 I	Plus to the	e Upat in	ternal threa	ided
Internal threaded ancho	r IST	M8	M10	м	12	M16	M20
Effective embedment depth	h _{ef} [mm]	90	90	1:	25	160	200
Related capsule UKA3 PI	us [-]	10	12	1	6	16E	24
(Durin		time of the m	inimal capsule		re -15 °C)	not fall below f	he
-15 to -10 > -10 to -5				30 h 16 h			
> -5 to 0				10 h			
> 0 to 5				45 min			
> 5 to 10				30 min			
> 10 to 20				20 min			
> 20 to 30 > 30 to 40				5 min 3 min			
				0 11111			
Upat UKA3 Plus							
Intended Use							ex B 5

Table C1.1: Characteristic resistance to steel failure under tension / shear loading of Upat anchor rods ASTA

Upat an	cnor ro	bas I	A21/	4					
Anchor rod ASTA				M8	M10	M12	M16	M20	M24
Characteristic resistance to	steel fa	ilure	unde	r tension I	oading ²⁾				
о, 		4.8		15(13)	23(21)	33	63	98	141
$\underbrace{\mathfrak{S}}_{\mathfrak{S}}$ Steel zinc plated	~	5.8		19(17)	29(27)	43	79	123	177
	Property class	8.8	[kN]	29(27)	47(43)	68	126	196	282
Stainless steel R and	cla [50	[KIN]	19	29	43	79	123	177
High corrosion	"	70		26	41	59	110	172	247
resistant steel HCR		80		30	47	68	126	196	282
Partial factors ¹⁾	1								
<u>ب</u>		4.8	-				50		
Steel zinc plated transformed steel zinc plated Stainless steel R and high corrosion	₽	5.8					50		
	Property class	8.8	[-]				50		
$\frac{1}{2}$ Stainless steel R and	20	50					86		
high corrosion resistant steel HCR		70					/ 1,87		
		80				1,	60		
Characteristic resistance to	steel fa	ilure	unde	r shear loa	ading ²⁾				
without lever arm		4.0		0(0)	14(10)	20	20	50	05
$\dot{S}_{S} \sim \dot{S}_{S}$ Steel zinc plated		4.8	1 1	9(8)	14(13)	20 25	38	59 74	85
	ه ت ل تح	5.8		11(10)	17(16)		47	98	106
	Property class	<u>8.8</u> 50	[kN]	15(13) 9	23(21) 15	34 21	63 39	61	141 89
C garacteristic C garacteristic Steel zinc plated Stainless steel R and high corrosion resistant steel HCR	L L L L L L L L L L L L L L L L L L L	70		9 13	20	30	55	86	124
resistant steel HCR		80		15	20	30	63	98	124
Ductility factor		 k7	[-]	10	20		,0	00	171
with lever arm		,					, •		
٥_		4.8		15(13)	30(27)	52	133	259	448
::		5.8		19(16)	37(33)	65	166	324	560
ensise a la construction de la c	erty	8.8	[]]]	30(26)	60(53)	105	266	519	896
Steel zinc plated estatuce tristic Stainless steel R and high corrosion	Property class	50	[Nm]	19	37	65	166	324	560
Steel zinc plated U yaracteristic U yaracter	_ <u> </u>	70		26	52	92	232	454	784
O ❷ resistant steel HCR		80		30	60	105	266	519	896
Partial factors ¹⁾									
		4.8				1,:	25		
Steel zinc plated	2	5.8				1,:	25		
Steel zinc plated steel zinc plated Stainless steel R and high corrosion	Property class	8.8	[-]			1,:	25		
$\frac{1}{2} \in Stainless steel R and$	0 Ö	50					38		
	-	70					/ 1,56		
resistant steel HCR		80				1,5	33		
 In absence of other nation Values in brackets are valid Only for ASTA made of high 	for hot o	dip ga	Ivanis						
Upat UKA3 Plus									
Performances Characteristic resistance to s rods ASTA	steel failu	ure ui	nder te	ension / sh	ear loading	of Upat an	chor	Anne> Appendix 1	

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ا د در م ا	0			R40	ST	BR4 O	BAAC		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				failure	underf	-		IVI 1 2	INT 6	M20	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		esistan			undert			42	70	102	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Characteristic				-						
with sclew class 70 HCR 26 41 59 110 172 Partial factors ¹) Property 5.8 1.50 1.50 1.50 Partial factor $\gamma_{Ms,N}$ Property R 1.50 1.87 Characteristic resistance to steel failure under shear loading without lever arm 9.2 14.5 21.1 39.2 62.0 Characteristic bearing capacity with screw $V^0_{Rk,s}$ Property R class 70 R [NI 9.2 14.5 21.1 39.2 62.0 Ductility factor $V^0_{Rk,s}$ Property R class 70 R [NI 12.8 20.3 29.5 54.8 86.0 Ductility factor k7 [-] 1.0 12.8 20.3 29.5 54.8 86.0 Characteristic bending moment Mith screw M ⁰ _{Rk,s} Property R class 70 R [NI 20 39 68 17.3 337 Characteristic bending moment Mith screw M ⁰ _{Rk,s} Property R class 70 R [NI 20 39 68 17.3 337 R Cla		N _{Rk,s}			[kN] -						
Partial factors ¹⁾ Property class 5.8 1,50 Partial factor $\gamma_{Ms,N}$ $\frac{class}{Rss}$ 8.8 1,50 Property class 70 R 1,87 1,87 Characteristic resistance to steel failure under shear loading without lever arm Characteristic bearing capacity with screw $v_{Rk,s}$ $roperty$ R class 70 R [kN] $9,2$ 14,5 21,1 39,2 62,0 Characteristic bearing capacity with screw $v_{Rk,s}$ $roperty$ R class 70 R [kN] $14,6$ 23,2 33,7 54,0 90,0 Ductility factor k_7 [-] 11,0 $12,8$ 20,3 29,5 54,8 86,0 Ductility factor k_7 [-] 1,0 $12,8$ 20,3 29,5 54,8 86,0 Characteristic bending moment with screw $M_{Rk,s}$ $roperty$ R R 30 60 105 266 519 26 52 92 232 454 26 52 92 232 454 <td colspa<="" td=""><td>with screw</td><td></td><td></td><td></td><td> -</td><td></td><td></td><td></td><td></td><td></td></td>	<td>with screw</td> <td></td> <td></td> <td></td> <td> -</td> <td></td> <td></td> <td></td> <td></td> <td></td>	with screw				-					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Partial factors ¹⁾									=	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Property	5.8				1,50			
$\frac{Property}{class 70} \frac{R}{HCR} = \frac{1,87}{1,87}$ Characteristic resistance to steel failure under shear loading without lever arm Characteristic bearing capacity with screw $V_{Rks}^{0} \frac{Property}{class 70} \frac{5.8}{RS} = 9,2 \\ 14,5 \\ 23,2 \\ 33,7 \\ 54,0 \\ 90,0 \\ 12,8 \\ 20,3 \\ 29,5 \\ 54,8 \\ 86,0 \\ 10,5 \\ 20,2 \\ 232 \\ 454 \\ 54,4 \\ 26 \\ 52 \\ 92 \\ 232 \\ 454 \\ 54 \\ 54 \\ 54 \\ 54 \\ 54 \\ 54 \\ $	Deutiel feeten			8.8	,,			1,50			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Partial factor	γMs,N	Property	R				1,87			
without lever arm Characteristic bearing capacity with screw Property class $5.8 \\ 8.8 \\ 8.8 \\ \hline Property class 70 \\ HCR 9,2 14,5 21,1 39,2 62,0 Display the class is the clas is the clas is the class is the class is the class $		_	class 70	HCR				1,87			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			ce to steel	failure	under	shear load	ing				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	without lever arı	m					1	1	1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Characteristic									62,0	
with screw Property class 70 R HCR 12,8 20,3 29,5 54,8 86,0 Ductility factor k7 [-] 12,8 20,3 29,5 54,8 86,0 Ductility factor k7 [-] 1,0 1,0 with lever arm Property class 5.8 8.8 173 337 Characteristic bending moment with screw M ⁰ _{Rk,s} Property class 5.8 8.8 100 105 266 519 26 52 92 232 454 Partial factors ¹⁾ Property class 5.8 8.8 1.25 1.25 Partial factor $\gamma_{Ms,V}$ Property class 7.8 1.25 1.25 1.25 Partial factor $\gamma_{Ms,V}$ Property class R 1.25 1.25 1.25 Partial factor $\gamma_{Ms,V}$ R R 1.26 1.56 1.56		V ⁰ Rk,s			.8 [kN]						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Property							,	
with lever arm Property class 5.8 (lass) 2.0 39 68 173 337 Characteristic bending moment with screw $M^0_{Rk,s}$ $\overline{Property}$ (lass 70) \overline{R} Nm 300 600 105 266 519 Property with screw \overline{R} HCR 26 52 92 232 454 Partial factors ¹) Property class \overline{R} R R $1,25$ $1,25$ Partial factor $\gamma_{Ms,V}$ \overline{R} R R $1,25$ $1,25$ Partial factor R R R $1,56$ $1,56$ $1,56$	D		class / U			12,8	20,3	,	54,8	86,0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				K 7	[-]			1,0			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	wiul lever arm		Dranatti	5.9		20	20	68	173	227	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Characteristic										
$\begin{array}{c c c c c c c } \hline \mbox{with sclew} & \mbox{class 70} & \mbox{HCR} & \mbox{26} & \mbox{52} & \mbox{92} & \mbox{232} & \mbox{454} \\ \hline \mbox{Partial factors}^{1)} \\ \hline \mbox{Partial factor} & \mbox{$\gamma_{Ms,V}$} & \begin{array}{c c c c } \hline \mbox{Property} & \end{array} & \end{array}$		M^0 Rk,s			[Nm]						
Partial factors1)Property 5.8 class $1,25$ Partial factor $\gamma_{Ms,V}$ $\frac{Property}{class}$ R class 70 $1,25$ HCR $1,56$ $1,56$	with screw				-						
Partial factor $\gamma_{Ms,V}$ $\begin{array}{c c c c c c c c c c c c c c c c c c c $	Partial factors ¹⁾										
Partial factor γ _{Ms,V} class 8.8 1,25 Property R 1,56 1,56 Lass 70 HCR 1,56 1,56			Property	5.8				1,25			
Property R 1,56 class 70 HCR 1,56	Deutiel fester			8.8	,,			1,25			
	Partial factor	γMs,∨		R				1,56			
¹⁾ In absence of other national regulations			class 70	HCR				1,56			
	¹⁾ In absence of	fother	class 70	HCR	<u> </u>						

threaded anchor IST

Size					Alls	sizes		
Characteristic resistance to c	concrete fa	ilure ur	nder tensi	on loading				
Installation factor	γinst	[-]			See annex	C 4 to C 5	5	
Factors for the compressive	strength of	fconcr	ete > C20/	25				
	C25/30				1,	02		
Increasing factor ψ_c for	C30/37				1,	04		
cracked or uncracked	C35/45	1,, [1,	07		
concrete	C40/50	[-]			1,	08		
τ _{Rk} = ψ _c ·τ _{Rk} (C20/25)	C45/55				1,	09		
	C50/60				1,	10		
Splitting failure								
h / h _{ef} ≥	: 2,0				1,0	h _{ef}		
Edge distance2,0 > h / h _{e f} >	1,3 c _{cr,sp}	[mm] -			4,6 h _{ef}	- 1,8 h		
h / h _{ef} ≤	1,3				2,20	3 h _{ef}		
Spacing	S cr,sp				2 0	cr,sp		
Concrete cone failure		· · ·						
Uncracked concrete	k ucr,N	- [-]				,0		
Cracked concrete	k cr,N					,7		
Edge distance	Ccr,N	[mm]				h _{ef}		
Spacing	Scr,N				2 0	cr,N		
Factors for sustained tensior	n loading							
Factor	$\psi^{\rm 0}{}_{\rm sus}$	[-]			-	2)		
Characteristic resistance to c	concrete fa	ilure ur	nder shea	r loading				
All installation conditions	γinst	[-]			1	,0		
Concrete pry-out failure								
Factor for pry-out failure	k ₈	[-]			2	,0		
Concrete edge failure		, , , , ,						
Effective length of fastener in shear loading	lf	[mm]	for c	_{nom} ≤ 24 mr	m: min (h _{ef} ;	12 d _{nom})		
Calculation diameters								
Size			M8	M10	M12	M16	M20	M24
Upat anchor rods	d	[[]	8	10	12	16	20	24
Upat internal threaded anchors IST	d_{nom}	[mm]	12	16	18	22	28	_1)
anchors IST ¹⁾ Anchor type not part of the ²⁾ No performance assessed	assessme	nt	12	16	18		28	''
Upat UKA3 Plus								
Upat UKA3 Plus Performances Characteristic resistance to co	oncrete failu	ure unde	er tension ,	shear load	ling		Anne>	

Appendix 15 / 18

Table (C4.1:	Characte anchor re concrete	ods AS			-				r Upat
Anchor ı	rod ASTA	۱			M8	M10	M12	M16	M20	M24
Combine	ed pullou	t and concr	ete cone	e failure			1		•	4
Calculatio	on diamet	er	d	[mm]	8	10	12	16	20	24
Uncrack	ed concr	ete							-	
		nd resistan								
Hammer-	-drilling wi	th standard	drill bit o	<u>r hollow dr</u>	<u>ill bit (dry a</u>	and wet cor	<u>ncrete)</u>		1	1
Tem-	l: 40 °	°C / 24 °C	_		12,5	12,5	12,5	12,5	12,5	12,5
perature	II: 80 °	°C / 50 °C	τRk,ucr	[N/mm ²]	12,0	12,0	12,0	12,0	12,0	12,0
range	III: 120	°C / 72 °C			10,5	10,5	10,5	10,5	10,5	10,5
Hammer-	-drilling wi	th standard	drill bit o	r hollow dr	<u>ill bit (wate</u>	r-filled hole	<u>)</u>			I
Tem-	l: 40 °	°C / 24 °C			_1)	_1)	12,5	12,5	12,5	12,5
perature	II: 80 °	°C / 50 °C	- τRk,ucr	[N/mm ²]	_1)	_1)	12,0	12,0	12,0	12,0
range	III: 120	°C / 72 °C	_		_1)	_1)	10,5	10,5	10,5	10,5
	ion factor									
	wet concre	ete	- γinst	[-]		1	1	,2		
Water-fill					_1)	_1)		1	,4	
	concrete									
		nd resistan								
Hammer-	-	th standard	arili dit oi	r nollow ar						
Tem-	-	°C / 24 °C	-	FN 1 (27	_1)	4,5	4,5	4,5	4,5	4,5
perature range		°C / 50 °C	τRk,cr -	[N/mm ²]	_1)	4,0	4,0	4,0	4,0	4,0
		°C / 72 °C				3,5	3,5	3,5	3,5	3,5
Hammer-		th standard	drill bit o	<u>r hollow dr</u>		er-filled hole				
Tem-		°C / 24 °C	-		_1)	_1)	4,5	4,5	4,5	4,5
perature range	II: 80 °	°C / 50 °C	τRk,cr -	[N/mm ²]	_1)	_1)	4,0	4,0	4,0	4,0
·	III: 120	°C / 72 °C			_1)	_1)	3,5	3,5	3,5	3,5
Installati	ion factor	′S				1				
-	wet concre	ete	- γinst	[-]	_1)		T	1,2		
Water-fill			•		_1)	_1)		1	,4	
	JKA3 Plu	ce assessed								
Perform	nances	sistance to co	ombined	pull-out a	nd concret	e failure for	. Upat anch	or rod	Anne) Appendix 1	

Combinec Calculatior Uncrackee Character	nreaded anchors IS d pullout and concr	Т		M8	M10	M12	M16	M20
Calculatior Uncrackee Character			failure					
Character	n diameter	d	[mm]	12	16	18	22	28
	d concrete						L	
<u>-lammer-d</u>	ristic bond resistan	ce in un	cracked co	oncrete C20)/25			
	Irilling with standard	drill bit o	<u>hollow dril</u>	l bit (dry an	d wet concrete	<u>e)</u>	1	
Tem	l: 40 °C / 24 °C			11	11	11	11	11
	II: 80 °C / 50 °C	- τRk,ucr	[N/mm ²]	10,5	10,5	10,5	10,5	10,5
range –	III: 120 °C / 72 °C	-		9,5	9,5	9,5	9,5	9,5
Hammer-d	Irilling with standard	drill bit o	hollow dril	l bit (water-t	filled hole)			
	l: 40 °C / 24 °C			11	11	_1)	11	_1)
Tem- – perature	II: 80 °C / 50 °C	- τRk,ucr	[N/mm ²]	10,5	10,5	_1)	10,5	_1)
range –	III: 120 °C / 72 °C	-		9,5	9,5	_1)	9,5	_1)
Installatio	on factors							
Dry and we	et concrete					1,2		
Water-fille	d hole	- γinst	[-] -	1	,4	_1)	1,4	_1)
Cracked c	concrete		· · ·					
Character	ristic bond resistan	ce in cra	cked conc	rete C20/2	5			
Hammer-d	Irilling with standard	drill bit o	<u>hollow dril</u>	l bit (dry an	d wet concrete	<u>e)</u>		
Tem	l: 40 °C / 24 °C	_		4,5	4,5	4,5	4,5	4,5
perature	II: 80 °C / 50 °C	τ _{Rk,cr}	[N/mm ²]	4,0	4,0	4,0	4,0	4,0
range –	III: 120 °C / 72 °C	-		3,5	3,5	3,5	3,5	3,5
Hammer_d	Irilling with standard	drill bit o	hollow dril	l bit (water-l	illed hole)			
- anniner-u	l: 40 °C / 24 °C			4,5	4,5	_1)	4,5	_1)
	1. 40 C/24 C			4,0	4,0	_1)	4,0	_1)
Tem- –	II: 80 °C / 50 °C	- TRk,cr	[N/mm ²]	.,•				
Tem- – perature range –		- ℃Rk,cr -	[N/mm ²]		3,5	_1)	3,5	_1)
Tem- – perature range –	II: 80 °C / 50 °C III: 120 °C / 72 °C	- TRk,cr -	[N/mm ²]	3,5	3,5	_1)	3,5	_1)
Tem perature range I nstallatio	II: 80 °C / 50 °C III: 120 °C / 72 °C	- TRk,cr -	[N/mm ²]		3,5	_ ¹⁾ 1,2	3,5	_1)

Anchor rod ASTA	M8	M10	M12	M16	M20	M24
Displacement-Factors	for tension loa	ding ¹⁾		• •	·	
Uncracked or cracked	concrete; Tem	perature range	e I, II, III			
δ _{N0-Factor} [mm/(N/mm ²)]	0,07	0,08	0,09	0,10	0,11	0,12
[IIIIII/(IN/IIIII [−])] DN∞-Factor	0,13	0,14	0,15	0,17	0,17	0,18
Displacement-Factors	for shear loadi	ng ²⁾				
Jncracked or cracked	concrete; Tem	perature range	e I, II, III	1		
0vo-Factor [mm/kN]	0,18	0,15	0,12	0,09	0,07	0,06
ÓV∞-Factor	0,27	0,22	0,18	0,14	0,11	0,09
¹⁾ Calculation of effect	ve displacemen	t:	²⁾ Calculati	on of effective	displacement:	
$\delta_{N0} = \delta_{N0-Factor} \cdot \tau$			$\delta_{V0} = \delta_{V0}$	-Factor · V		
			s., - s.,	₀-Factor · V		
$\delta_{N\infty}$ = $\delta_{N\infty}$ -Factor $\cdot \tau$			$O_{V\infty} - O_{V\alpha}$	o-Factor V		
τ = acting bond st Table C6.2: Dis	rength under ter placements	-	V = actir	ng shear loadir	-	
τ = acting bond st Table C6.2: Dis	-	-	∨ = actir ernal thread	ng shear loadir	-	M20
τ = acting bond st Table C6.2: Dis Internal threaded anchor IST	placements M8	for Upat inte	∨ = actir ernal thread	ng shear loadir ed anchors	IST	M20
τ = acting bond st Table C6.2: Dis nternal threaded anchor IST Displacement-Factors	placements M8 for tension loa	for Upat inte M10 ding ¹⁾	V = actir ernal thread	ng shear loadir ed anchors	IST	M20
τ = acting bond st Table C6.2: Dis Internal threaded anchor IST Displacement-Factors Uncracked or cracked	placements M8 for tension loa concrete; Tem	for Upat inte M10 ding ¹⁾	V = actir ernal thread M e I, II, III	ng shear loadir ed anchors	IST	M20 0,19
τ = acting bond st Table C6.2: Dis nternal threaded anchor IST Displacement-Factors Jncracked or cracked	placements M8 for tension loa concrete; Tem	for Upat inte M10 ding ¹⁾ perature range	V = actir ernal thread M e I, II, III 0	ng shear loadir ed anchors	IST M16	
	placements M8 for tension loa concrete; Tem 0,09 0,13	for Upat inte M10 ding ¹⁾ perature range 0,10 0,15	V = actir ernal thread M e I, II, III 0	ng shear loadir ed anchors	IST M16	0,19
τ = acting bond st Table C6.2: Dis Internal threaded anchor IST Displacement-Factors Uncracked or cracked δ _{N0-Factor} [mm/(N/mm ²)] Displacement-Factors	placements M8 for tension loa concrete; Tem 0,09 0,13 for shear loadi	for Upat inte M10 ding ¹⁾ perature range 0,10 0,15 ng ²⁾	V = actir ernal thread M e I, II, III 0, 0,	ng shear loadir ed anchors	IST M16	0,19 0,19
τ = acting bond st Table C6.2: Dis Internal threaded anchor IST Displacement-Factors Uncracked or cracked δN0-Factor [mm/(N/mm ²)] Displacement-Factors Uncracked or cracked δN0-Factor	placements M8 for tension loa concrete; Tem 0,09 0,13 for shear loadi	for Upat inte M10 ding ¹⁾ perature range 0,10 0,15 ng ²⁾	V = actir ernal thread M e I, II, III 0, 0, e I, II, III	ng shear loadir ed anchors	IST M16	0,19
$ τ = acting bond st $ Table C6.2: Dis Internal threaded anchor IST Displacement-Factors Uncracked or cracked $\overline{O_{NO-Factor}}$ [mm/(N/mm ²)] Displacement-Factors Uncracked or cracked	placements M8 for tension loa concrete; Tem 0,09 0,13 for shear loadi concrete; Tem	for Upat inte M10 ding ¹⁾ perature range 0,10 0,15 ng ²⁾ perature range	V = actir ernal thread M e I, II, III 0, e I, II, III 0,	ed anchors	IST M16 0,11 0,17	0,19 0,19
τ = acting bond st Table C6.2: Dis nternal threaded anchor IST Displacement-Factors Jncracked or cracked bN0-Factor Displacement-Factors Jncracked or cracked bN0-Factor Displacement-Factors Jncracked or cracked bN0-Factor Displacement-Factors Jncracked or cracked bV0-Factor Imm/kN1	placements M8 for tension loa concrete; Tem 0,09 0,13 for shear loadi concrete; Tem 0,12 0,18	for Upat inte M10 ding ¹⁾ perature range 0,10 0,15 ng ²⁾ perature range 0,09 0,14	V = actir ernal thread M e I, II, III 0, 0 e I, II, III 0, 0, 0,	ed anchors	IST M16 0,11 0,17 0,07	0,19 0,19 0,05 0,08
τ = acting bond st Table C6.2: Dis nternal threaded anchor IST Displacement-Factors Jncracked or cracked SN0-Factor SN0-Factor Displacement-Factors Jncracked or cracked SN0-Factor Displacement-Factors Jncracked or cracked SN0-Factor Jncracked or cracked SV0-Factor SV0-Factor SV0-Factor	placements M8 for tension loa concrete; Tem 0,09 0,13 for shear loadi concrete; Tem 0,12 0,18	for Upat inte M10 ding ¹⁾ perature range 0,10 0,15 ng ²⁾ perature range 0,09 0,14	V = actir ernal thread M e I, II, III 0, 0, e I, II, III 0, 0, 2) Calcu	ed anchors	IST M16 0,11 0,17 0,07 0,10	0,19 0,19 0,05 0,08
$ τ = acting bond st $ Table C6.2: Dis nternal threaded anchor IST Displacement-Factors Jncracked or cracked $\overline{ONO-Factor}$ [mm/(N/mm ²)] Displacement-Factors Jncracked or cracked $\overline{OVO-Factor}$ [mm/kN] $\overline{OVO-Factor}$ [mm/kN] 1) Calculation of effect	placements M8 for tension loa concrete; Tem 0,09 0,13 for shear loadi concrete; Tem 0,12 0,18	for Upat inte M10 ding ¹⁾ perature range 0,10 0,15 ng ²⁾ perature range 0,09 0,14	V = actin ernal thread M e I, II, III 0, 0, e I, II, III 0, 0, 2) Calcu δ _{V0} =	ed anchors	IST M16 0,11 0,17 0,07 0,10	0,19 0,19 0,05 0,08

Upat UKA3 Plus

Performances Displacements for anchor rods ASTA and Upat internal threaded anchors IST

Annex C 6

Appendix 18 / 18