

DECLARATION OF PERFORMANCE

DoP: 0158

for Upat High-performance-Bonded-Anchor UHB-I (Bonded anchor for use in concrete) - EN

1. Unique identification code of the product-type: DoP: 0158

2. Intended use/es: Post-installed fastening in cracked or uncracked concrete, see appendix, especially Annexes B 1 to B 7

3. Manufacturer: Upat Vertriebs GmbH, Bebelstraße 11, 79108 Freiburg im Breisgau, Germany

4. Authorised representative: --

5. System/s of AVCP: 1

6. European Assessment Document: EAD 330499-00-0601

European Technical Assessment: ETA-18/0864; 2018-12-12

Technical Assessment Body: DIBt

Notified body/ies: 1343 - MPA Darmstadt

7. Declared performance/s:

Mechanical resistance and stability (BWR 1

- Characteristic resistance to tension load (static and quasi-static loading):
 See appendix, especially Annexes C 1 and C 2
- Characteristic resistance to shear load (static and quasi-static loading):
 See appendix, especially Annexes C 3 and C 4
- Displacements (static and quasi-static loading): See appendix, especially Annexes C 5 and C 6
- Characteristic resistance and displacements for seismic performance categories C1 and C2: NPD

Hygiene, health and the environment (BWR 3)

- Content, emission and/or release of dangerous substances: NPD
- 8. Appropriate Technical Documentation and/or Specific Technical Documentation: ---

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

1.V. A. DULL

Andreas Bucher, Dipl.-Ing.

Wolfgang Hengesbach, Dipl.-Ing., Dipl.-Wirtsch.-Ing.

i.V. W. Kylal

Tumlingen, 2018-12-19

- This DoP has been prepared in different languages. In case there is a dispute on the interpretation the english version shall always prevail.
- The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Specific Part

1 Technical description of the product

The Upat High-performance-Bonded-Anchor UHB is a torque controlled bonded anchor consisting of a mortar cartridge with mortar UPM 66 and an anchor rod UHB -I -I A L or UHB -I -I A S with hexagon nut and washer.

The anchor rod is placed into a drilled hole filled with injection mortar. The load transfer is realised by mechanical interlock of several cones in the bonding mortar and then via a combination of bonding and friction forces in the anchorage ground (concrete).

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

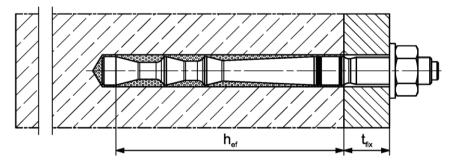
3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1 and C 2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 3 and C 4
Displacements (static and quasi-static loading)	See Annex C 5 and C 6
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

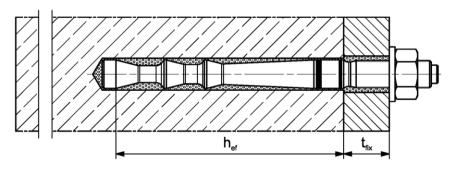
3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance	
Content, emission and/or release of dangerous substances	No performance assessed	

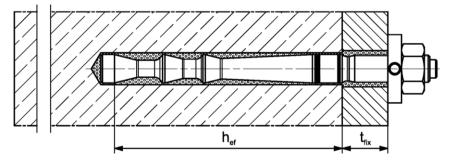
Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base


In accordance with the European Assessment Document EAD 330499-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1


Installation conditions part 1

Upat High-performance-Bonded-Anchor UHB - I - A L


Pre-positioned installation

Push through installation (annular gap filled with mortar)

Pre-positioned or push through installation with subsequently pressed filling disk (annular gap filled with mortar)

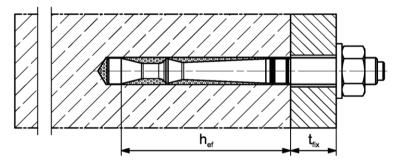
Pictures not to scale

h_{ef} = effective anchorage depth

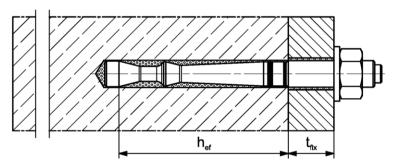
 t_{fix} = thickness of fixture

Upat High-performance-Bonded-Anchor UHB-I

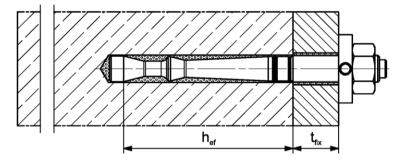
Product description


Installation conditions part 1; UHB - I - A L

Annex A 1


Installation conditions part 2

Upat High-performance-Bonded-Anchor UHB - I - A S

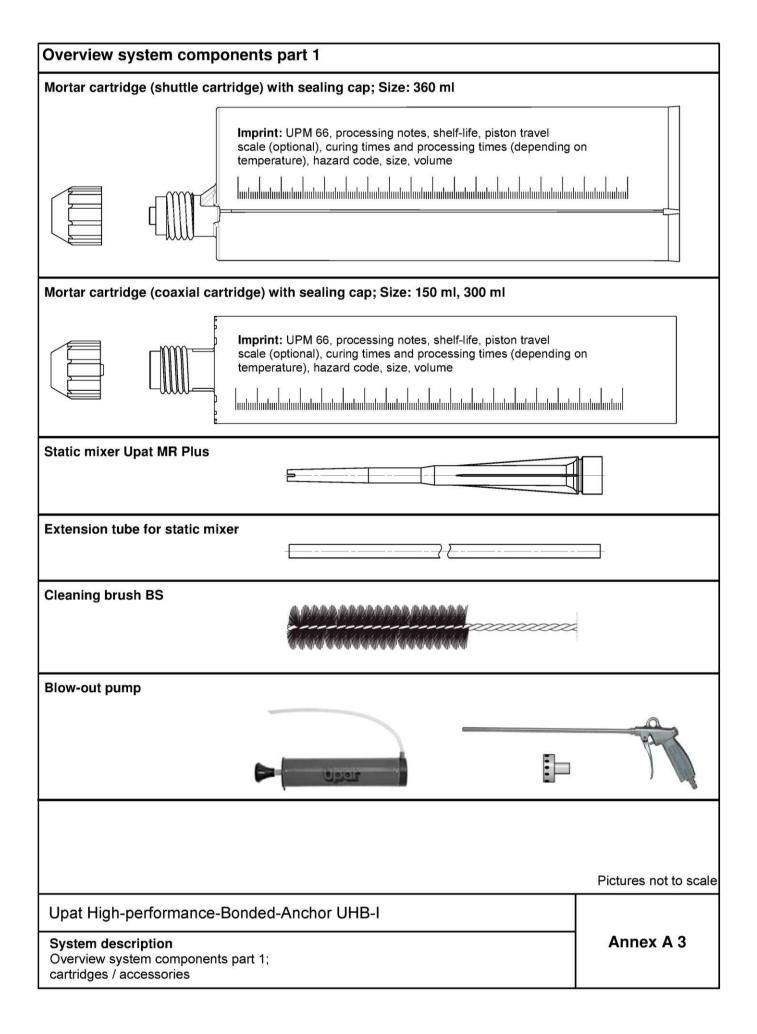

Pre-positioned installation

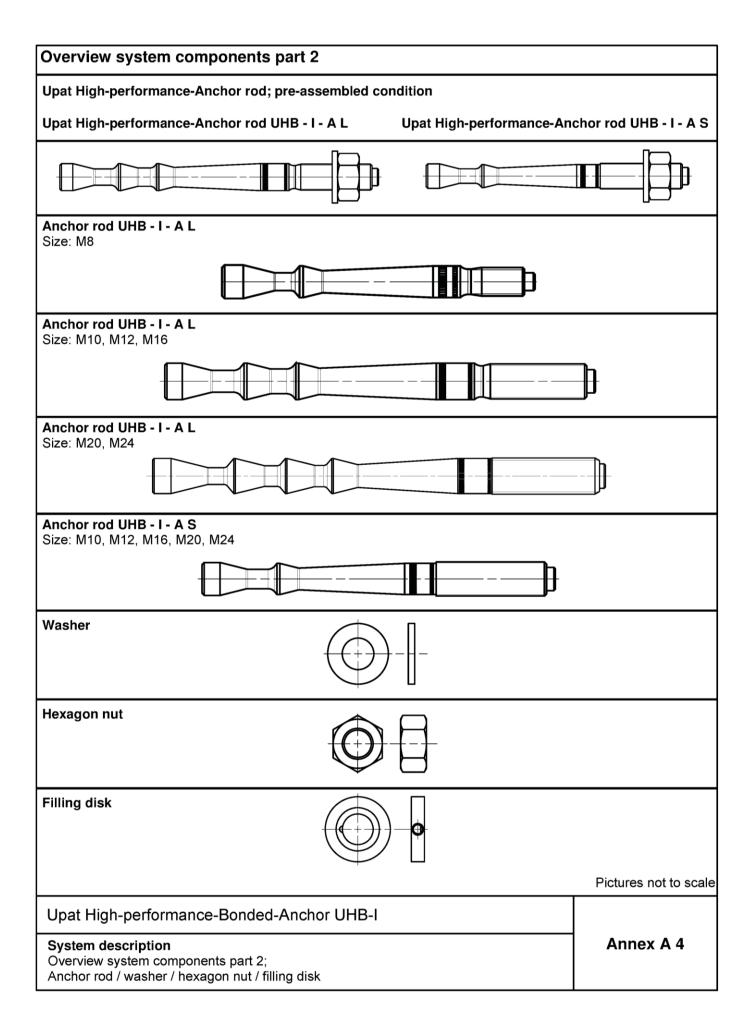
Push through installation

Pre-positioned or push through installation with subsequently pressed filling disk (annular gap filled with mortar)

Pictures not to scale

h_{ef} = effective anchorage depth


 t_{fix} = thickness of fixture


Upat High-performance-Bonded-Anchor UHB-I

Product description

Installation conditions part 2; UHB - I - A S

Annex A 2

Tabl	e A5.1: Materials							
Part	Designation		Material					
1	Mortar cartridge		Mortar, hardener, filler					
	Steel grade	Steel, zinc plated	Stainless steel A4	High corrosion resistant steel C				
2	Upat High- performance- Anchor rod UHB - I - A L or UHB - I - A S	Property class 8.8; EN ISO 898-1:2013 zinc plated \geq 5 μ m, EN ISO 4042:1999 A2K $f_{uk} \leq$ 1000 N/mm ² $A_5 >$ 12 % fracture elongation	Property class 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462 EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 12 \%$ fracture elongation	Property class 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 12 \%$ fracture elongation				
3	Washer ISO 7089:2000	zinc plated ≥ 5 μm, EN ISO 4042:1999 A2K	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014				
4	Hexagon nut	Property class 8; EN ISO 898-2:2012 zinc plated ≥ 5 μm, ISO 4042:1999 A2K	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014				
5	Filling disk similar to DIN 6319-G	zinc plated ≥ 5 μm, EN ISO 4042:1999 A2K	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014				

Upat High-performance-Bonded-Anchor UHB-I	
System description Materials	Annex A 5

Specifications of intended use (part 1) Overview use and performance categories **Table B1.1:** UPM 66 with ... Anchorages subject to UHB-I-AL UHB-I-AS Hammer drilling with standard all sizes drill bit Hammer drilling with hollow drill bit (fischer "FHD", Heller "Duster Expert", Nominal drill bit diameter (d₀) ≥ 12 mm Bosch "Speed-Clean" or Hilti "TE-CD, TE-YD") cracked concrete Static or quasi Tables: Tables: all sizes all sizes static load, in C1.1, C3.1, C5.1 C2.1, C4.1, C6.1 uncracked concrete dry or wet Use category all sizes concrete Pre-positioned all sizes anchor Kind of Push through installation all sizes anchor 0°C to +40°C Installation temperature (max. short term temperature +80 °C and -40°C to +80°C In-service temperature max. long term temperature +50 °C) Upat High-performance-Bonded-Anchor UHB-I Annex B 1 Intended use Specifications (part 1)

Specifications of intended use (part 2)

Base materials:

 Compacted reinforced or unreinforced normal weight concrete without fibres of Strength classes C20/25 to C50/60 according to EN 206:2013

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions
 (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure, to permanently damp internal conditions or in other particular aggressive conditions (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Anchorages have to be designed by a responsible engineer with experience of concrete anchor design
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored.
 The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages are designed in accordance with EN 1992-4:2018 and EOTA Technical Report TR055

Installation:

- Anchor installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · In case of aborted hole: The hole shall be filled with mortar
- · Observe the effective anchorage depth
- · Overhead installation is allowed

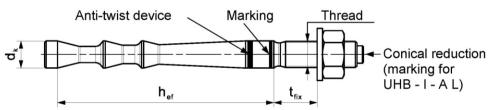
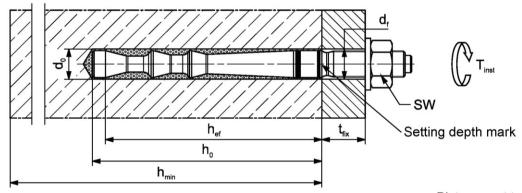

Upat High-performance-Bonded-Anchor UHB-I	
Intended Use Specifications (part 2)	Annex B 2

Table B3.1: Installation parameters for Upat High-performance-Bonded-Anchor rods UHB - I - A L

Anchor rod UHB - I - A L	Т	hread	M8x	M10x	M1	2x		M16x	0	M20x	M24x
Anchor rod UHB - I - A L			60	95	100	120	125	145	160	210	210
Cone diameter	d_k		9,4	10,7	12	2,5	et.	16,8		23	,0
Width across flats	SW		13	17	1	9		24		30	36
Nominal drill hole diameter	d ₀		10	12	1	4		18		2	5
Drill hole depth	h ₀		66	101	106	126	131	151	166	21	16
Effective anchorage depth	h _{ef}		60	95	100	120	125	145	160	21	10
Minimum spacing and minimum edge distance s _{mir}	= c _{min}	[mm]	4	0	5	0	55	60	70	9	0
Diameter of clearance hole pre-positioned anchorage	d _f ≤		9	12	1	4		18		22	26
in the fixture push through anchorage	d _f ≤		11	14	1	6		20		2	6
Min. thickness of concrete member	h _{min}		100	14	10	17	70	190	220	28	30
Installation torque	T _{inst}	[Nm]	15	20	4	0		60		10	00
Thickness of fixure	t _{fix} ≤						1500				
Filling disk 1)	≥ d _a	[mm]	-	26	3	0		38		46	54
Tilling disk	t _s		-	6	6	3		7		8	10


¹⁾ Using filling disk reduces t_{fix} (usable length of the anchor)

Upat High-performance-Bonded-Anchor rod UHB - I - A L

Marking: work symbol, size of anchor, setting depth. e.g.: UHB-I M10x95 For stainless steel additional **A4**. For high corrosion resistant steel additional **C.** For high corrosion resistant steel additional marking **C** also on the face side

Installation conditions:

Pictures not to scale

Upat High-performance-Bonded-Anchor UHB-I

Intended Use

Installation parameters Upat High-performance-Bonded-Anchor rod UHB - I - A L

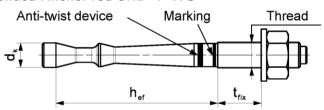
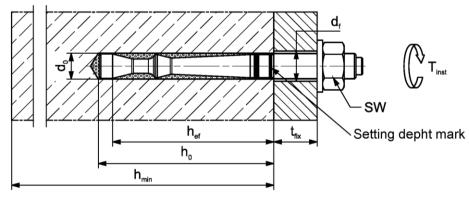

Annex B 3

Table B4.1: Installation parameters for Upat High-performance-Bonded-Anchor rods UHB - I - A S

A l 1 1 1 1 1 1		Thread		M1	10x	M12x	M16x	M20x	M24x
Anchor rod UHI	3 - I - A S			60	75	75	95	170	170
Cone diameter		d _k		9	,4	11,3	14,5	23	3,0
Width across flat	S	SW] [1	7	19	24	30	36
Nominal drill hole	e diameter	do] [1	0	12	16	2	:5
Drill hole depth		ho] [66	81	81	101	1	76
Effective anchora	age depth	h _{ef}	1 [60	75	75	95	1	70
Minimum spacing minimum edge d		_n = c _{min}	[mm]		40		50	8	0
Diameter of	pre-positioned anchorage	0.		1	2	14	18	22	26
clearance hole in the fixture	push through anchorage			1	2	14	18	2	6
Min. thickness of omember	concrete	h_{min}		100	1:	20	150	24	40
Installation torqu	е	T _{inst}	[Nm]	1	5	30	50	10	00
Thickness of fixu	re	t _{fix} ≤				15	500		
filling disk 1)		≥ d _a	[mm]	2	:6	30	38	46	54
illing disk		t _s] [(3	6	7	8	10


¹⁾ Using filling disk reduces t_{fix} (usable length of the anchor)

Upat High-performance-Bonded-Anchor rod UHB - I - A S

Marking: work symbol, size of anchor, setting depth. e.g.: UHB-I M10x75 For stainless steel additional **A4**. For high corrosion resistant steel additional **C.** For high corrosion resistant steel additional marking **C** also on the face side

Installation conditions:

Pictures not to scale

Upat High-performance-Bonded-Anchor C	IHR-I	
---------------------------------------	-------	--

Intended Use

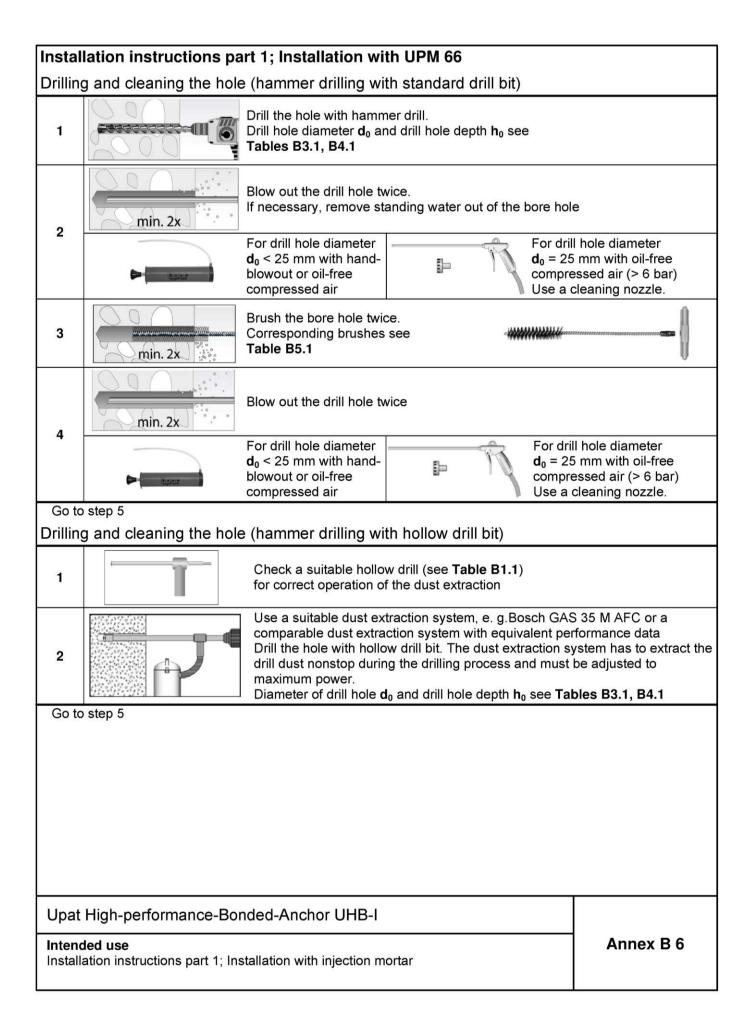

Installation parameters Upat High-performance-Bonded-Anchor rod UHB - I - A S

Annex B 4

Table B5.1: Parameters of the cleaning brush BS (steel brush)

The size of the steel brush refers to the nominal drill hole diameter

Drill hole diameter	d_0	[mm]	10	12	14	16	18	25
Brush diameter	d_b	[mm]	11	13	16	2	()	27


Table B5.2: Maximum processing time of the mortar **UPM 66** and minimum curing time (During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature)

Concrete temperature	Maximum processing time	Minimum curing time ¹⁾
[°C]	t _{work}	t _{cure}
0 to +4		3 h
> +5 to +9	15 min	90 min
> +10 to +19	6 min	35 min
> +20 to +29	4 min	20 min
> +30 to +40	2 min	12 min

¹⁾ In wet concrete the curing times must be doubled

Pictures not to scale

Upat High-performance-Bonded-Anchor UHB-I	
Intended Use Parameters of the cleaning brush; Processing times and curing times	Annex B 5

Prepa	ring the cartridge		
_	0	Remove the sealing cap	
5		Screw on the static mixer (the spiral in the static mixer must be clearly visible)	
6		Place the cartridge into the dis	penser
7	X	Extrude approximately 10 cm or resin is evenly grey in colour. It is not uniformly grey	
Injecti	on of the mortar		
		Fill approximately 2/3 of the drill hole with mortar. Exact que (travel scale on the cartridge) see instruction sheet. Fill the always begin from the bottom of the hole to avoid bubbles	
8		Push-through installation: By using High-performance UHB - I - AL the drill hole in the fixture must be also fille High-performance-Bonded-Anchor rods UHB - I - AS is	ed with mortar. By using
		For drill hole depth ≥ 170 mm use an extension tube	
Install	ation High-performand	e-Bonded-Anchor rods UHB - I - A L and UHB -	- I - A S
9		Only use clean and oil-free anchor rods. Push the anchor rod down to the bottom of the hole, turning it slightly while doing so.	
		After inserting the anchor rod UHB - I - AL , surplus mor from the fixture. After inserting the anchor rod UHB - I - AS , surplus mor from the bore hole or must be visible in the fixture.	
10		For overhead installations support the anchor rod with wedges. (e.g. Upat centering wedges)	
11		time t	Mounting the fixture inst see ables B3.1, B4.1
Option		After the minimum curing time is reached, the gap betw (annular clearance) may be filled with mortar via the filling Compressive strength \geq 50 N/mm ² (e.g. UPM 66). ATTE disk reduces t_{fix} (usable length of the anchor)	ng disc.
Upat	High-performance-Bo	nded-Anchor UHB-I	
luste use	ded use		Annex B 7

Anchor rod UHB -		M8x	M10x		12x		M16x	ı	M20x	M24		
		60	95	100	120	125	145	160	210	210		
Bearing capacity		-	eel fai					Г			I	
Characteristic —	Steel, zinc			25,1	34,4	49	9,8		96,6		13	7,6
resistance	Stainless s		[kN]	05.4	04.4				00.0		40	7.0
$N_{Rk,s}$	High co resistant			25,1	34,4	49	9,8		96,6		13	7,6
Partial factors ¹⁾												
_	Steel, zinc		1					1,5 ¹⁾				
Partial factor	Stainless s		1 I-I					1,5 ¹⁾				
γ̃Ms,N	High co resistant							1,5 ¹⁾				
Pullout failure in c	racked concrete	C20/2	5									
Characteristic resist	ance	$N_{Rk,p}$	[kN]					2)				
Pullout and splittir		racked	concr	ete C20)/25							
Characteristic resist	ance	$N_{Rk,p}$	[kN]					2)				
Spacing	Spacing S _{cr,sp}		[mm]	300	476	380	600	375	500	580	63	30
Edge distance c _{cr,sp}		[[[]]]	150	238	190	300	188	250	290	3	15	
Pullout and splittir	ng failure in unc	racked	concr	ete C20	0/25							
Characteristic resistance N _{Rk,p}		[kN]	20	35	40	50	2)	75	95		_2)	
Spacing	Spacing s _{cr,sp}		[mm]					3,0h _{ef}				
Edge distance $c_{cr,sp}$		[mm]	1,5h _{ef}									
Factors for the cor	mpressive stren	gth of c	concre	te > C2	20/25							
	C25/30							1,10				
	C30/37			1,22								
Increasing factor	C35/45	M	, , ,	1,34								
for $N_{Rk,p}$	C40/50	Ψ _c [-]	[-]	1,41								
	C45/55			1,48								
	C50/60			1,55								
Factors for concre	te cone failure											
Cracked concrete		$k_{\text{cr},N}$	[-]					7,7				
Uncracked concrete		$k_{ucr,N}$	[-]					11,0				
Concrete cone fail	ure											
Effective anchorag	e depth	h_{ef}	[mm]	60	95	100	120	125	145	160	2	10
Partial factor 1)3)		γмс	[-]					1,8				
Effective anchorag Partial factor $^{1)(3)}$ 1) In absence of o $^{2)}$ Not decisive $^{3)}$ γ_{inst} = 1,2 is incli	ther national reg	γмс	[-]	60	95	100	120		145	160	2	10
Upat High-performance	ormance-Bon				i-I					An	nex C	1

Upat High-performance-Bonded-Anchors UHB - I - A L

Edge distance C _{cr,sp} Edge distance T,5h _{ef}	M24x						
Characteristic resistance Steel, zinc plated resistance resistance Stainless steel Ad Righ corrosion resistant steel C Stainless steel Ad Righ corrosion resistant steel C Partial factor Stainless steel Ad Righ corrosion resistant steel C Stainless steel Ad Righ Righ corrosion resistant steel C Stainless steel Ad Righ Righ Righ Righ Righ Righ Righ Righ	170						
Characteristic resistance Aligh corrosion resistant steel C RN 25,1 34,4 61,6 128,5							
Stainless steel A4 High corrosion resistant steel C RN 25,1 34,4 61,6 128,5	;						
Steel, zinc plated Partial factor Steel, zinc plated Partial factor Stainless steel A4 Tyms,N Righ corrosion resistant steel C Partial factor Stainless steel C Ti,5¹¹ Ti,5¹							
Steel, zinc plated Stainless steel A4 This increasing factor Stainless steel A4 This increasing for the compressive strength of CA40/50 CA40/50 CA5/55 C50/60 CA6/55 C50/60	j						
Partial factor Stainless steel A4 High corrosion resistant steel C Following failure in cracked concrete C20/25							
High corrosion resistant steel C							
High corrosion resistant steel C Pullout failure in cracked concrete C20/25 Characteristic resistance N _{Rk,p} [kN] ²							
Characteristic resistance N _{Rk,p} [kN]							
Pullout and splitting failure in uncracked concrete C20/25 Characteristic resistance N _{Rk,p} [kN] ² Spacing s _{cr,sp} mml 300 340 510 Edge distance c _{cr,sp} 150 170 255 Pullout and splitting failure in uncracked concrete C20/25 Characteristic resistance N _{Rk,p} [kN] 20 25 40 ²² Spacing s _{cr,sp} [mml] 3,0h _{ef} ² Edge distance c _{cr,sp} [mml] 3,0h _{ef} ²² Factors for the compressive strength of concrete > C20/25 Increasing factor for N _{Rk,p} C25/30 C30/37 C40/50 C40/50 C40/50 C40/50 C40/50 C40/50 C44/55 C50/60 1,10 C40/50 C40/50 C44/50 C50/60 C40/50 C40/50 C40/50 C50/60 1,41 C40/50 C4							
Characteristic resistance N _{Rk,p} [kN] 2' Spacing s _{Cr,sp} mm] 300 340 510 Edge distance c _{Cr,sp} mm] 150 170 255 Pullout and splitting failure in uncracked concrete C20/25 Characteristic resistance N _{Rk,p} [kN] 20 25 40 2' Spacing s _{Cr,sp} mm] 3,0h _{ef}							
Spacing Scr.sp Edge distance Ccr.sp Emm 300 340 510							
Edge distance Cor,sp T50 T70 255							
Edge distance C _{cr,sp} F 150 170 255							
Characteristic resistance N _{Rk,p} [kN] 20 25 40 ²							
Spacing S _{cr,sp} [mm] 3,0h _{ef} Edge distance c _{cr,sp} [mm] 1,5h _{ef} Factors for the compressive strength of concrete > C20/25 Increasing factor C35/30 C30/37 C40/50 C40/50 C45/55 C50/60 1,10 C40/50 C45/55 C50/60 C45/55 C50/60 1,34 C40/50 C45/55 C50/60 1,48 C40/50 C45/55 C50/60 Factors for concrete cone failure Cracked concrete cone failure Cracked concrete k _{ucr,N} k _{cr,N} [-] 7,7 Uncracked concrete cone failure 11,0 Concrete cone failure Effective anchorage depth h _{ef} [mm] 60 75 95 170 Partial factor ^{1) 3)} γ _{Mc} [-] 1,8							
Edge distance C _{cr,sp} Edge distance T,5h _{ef}							
Edge distance C _{Cr,sp} S 1,5h _{ef}							
Increasing factor for N _{Rk,p}							
C30/37 C35/45 Pc [-] 1,34 1,41 1,41 1,48 1,55 1,55 1,55 1,00 1,00 1,00 1,							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \frac{\text{C40/50}}{\text{C45/55}} = \frac{\text{C40/50}}{\text{C50/60}} = \frac{1,41}{1,48} = \frac{1,48}{1,55} = \frac{1,41}{1,55} = \frac{1,41}$	·						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
Uncracked concrete $k_{ucr,N}$ [-] 11,0 Concrete cone failure Effective anchorage depth h_{ef} [mm] 60 75 95 170 Partial factor 1)3) γ_{Mc} [-] 1,8							
Effective anchorage depth h_{ef} [mm] 60 75 95 170 Partial factor $^{1)3)}$ γ_{Mc} [-] 1,8							
Partial factor $^{1)3)}$ γ_{Mc} [-] 1,8							
Time 12							
$^{1)}$ In absence of other national regulations. Not decisive $^{3)}$ γ_{inst} = 1,2 is included.							

Essential characteristics under static and quasi-static tension load for

Upat High-performance-Bonded-Anchors UHB - I - A S

Table C3.1:	Essential cha									oad fo	or	
Anchor rod U	HB - I - A L		M8x 60	M10x 95	M1 100	2x 120	125	M16x 145	160	M20x 210	M24x 210	
Bearing capac	city under shear lo	ad, stee	el failu	ire								
without lever	arm											
	Steel, zinc plated			13,7	20,8	30),3		56,3		87,9	126,9
Characteristic resistance	Stainless steel A4 and High corrosion resistant steel C	$V^0_{Rk,s}$	[kN]	15,2	23,2	33	3,7	62,7			97,9	141
with lever arm	1											ı
	Steel, zinc plated			31	62	10)5	266		519	896	
Characteristic bending moment	Stainless steel A4 and High corrosion resistant steel C	M ⁰ _{Rk,s} [Nm]		31	62	105		266		519	896	
Partial factors	i											
Partial factor 1)		γ̃Ms,∨	[-]					1,25				
Ductility factor		k ₇	[-]		1,0							
Concrete pry-	out failure											
Factor	Factor k ₈		.,	2,0								
Partial factor ¹⁾		γмср	[-]					1,5				
Concrete edge	e failure											
Effective length	n of anchor	l _f	[mm]	60	95	100	112	125	14	14	20	00
Calculation dia	meter	d	[mm]	10	12	1	4	18		25		
Partial factor ¹⁾	factor ¹⁾ γ _{Mc}							1,5				

¹⁾ In absence of other national regulations.

Upat High-performance-Bonded-Anchor UHB-I	
Performance	Annex C 3
Essential characteristics under static and quasi-static shear load for	
Upat High-performance-Bonded-Anchors UHB - I - A L	

Table C4.1:	Essential cha Upat High-p					•		oad for		
Anchor rod U	M1 60	0x 75	M12x 75	M16x 95	M20x 170	M24x 170				
Bearing cana	city under shear lo	ad etac	d faile		/5	/5	95	170	170	
without lever		au, stee	i iaiic	116						
	Steel, zinc plated			19	,7	27,3	50,8	80,3	114,2	
Characteristic resistance	Stainless steel A4	$V^0_{Rk,s}$	[kN]	24,1		33,7	62,7	97,9	124,5	
	High corrosion resistant steel C			24,1		33,7	62,7	97,9	141	
with lever arm	1									
	Steel, zinc plated			6	2	105	266	519	896	
Characteristic bending moment	Stainless steel A4 and High corrosion resistant steel C	$M^0_{Rk,s}$	[Nm]	6	2	105	266	519	896	
Partial factors	;					•	•	•		
Partial factor 1)		γMs,V	[-]	1,25						
Ductility factor		k ₇	[-]	1,0						
Concrete pry-	out failure									
Factor		k ₈	[-]		2,0					
Partial factor ¹⁾ γ _{Mcp} [-			[-]	1,5						
Concrete edge	e failure									
Effective length	n of anchor	I _f	[mana]	60	7	75	95	1	70	
Calculation dia	meter	d	[mm]	1	0	12	16	2	5	
Partial factor ¹⁾		γмс	[-]	1,5						

¹⁾ In absence of other national regulations.

Upat High-performance-Bonded-Anchor UHB-I	
Performance	Annex C 4
Essential characteristics under static and quasi-static shear load for	
Upat High-performance-Bonded-Anchors UHB - I - A S	

Anchor rod		M8x	M10x	M1	l2x		M16x	M20x	M24x		
UHB - I - A L		60	95	100	120	125	145	160	210	210	
Displaceme	nt under te	ension lo	ad								
Cracked cor	crete										
Tension load	[kN]	6,6	15,9	17,1	22,5	24,0	30,0	34,7	52,2	52,2	
δ_{N0}	[]		0	,8				0,6			
$\delta_{N\infty}$	[mm]					1,7					
Uncracked o	oncrete										
Tension load	[kN]	9,3	22,3	24,0	31,6	33,6	42,0	48,7	73,2	73,2	
δ_{N0}	[mana]	0,2	0,2 0,4 0,6							,6	
$\delta_{N^{\infty}}$	[mm]		1,7								
Displaceme	nt under s	hear load	1								
Uncracked o	r cracked	concrete	•								
Steel zinc pl	ated										
Shear load	[kN]	7,8	11,9	17	7,3		32,2		50,2	72,5	
$\delta_{ m V0}$	[mm]	1	,2			1,3			3,5		
$\delta_{V\infty}$	[mm]	1	,8			2,0			5,3		
Stainless st	eel A4										
Shear load	[kN]	8,7	13,3	19,3		35,8			55,9	80,6	
$\delta_{ m V0}$	[mm]	1	,0	1	,1		2,2	3,5			
$\delta_{V^{\infty}}$	נווווון	1	1,5 1,7 3,3						5,3		
High corros	ion resista	ant steel (
Shear load	[kN]	8,7	13,3	19	9,3	35,8			55,9	80,6	
δ_{V0}	[mm]	1	,2	1	,3		2,4	3,7	5,0		
$\delta_{V\infty}$	[mm]		,8	2,0			3,6	5,6	7,5		

Upat High-performance-Bonded-Anchor UHB-I	
Performance Displacement for Upat High-performance-Bonded-Anchor UHB - I - A L	Annex C 5

Anchor rod		M10	0x	M12x	M16x	M20x	M24x			
UHB - I - A S		60	75	75	95	170	170			
Displaceme	nt under te	nsion load		•						
Cracked cor	ncrete				_					
Tension load	[kN]	6,6	•	11,1	15,9	38	3,0			
δ_{N0}	[mm]	0,8		0,3	0,4	0,	,6			
$\delta_{N\infty}$				•	1,7					
Uncracked o	concrete									
Tension load	[kN]	9,3	•	15,6	22,3	53,3				
δ_{N0}	[mm]	0,2 0,5								
$\delta_{N\infty}$	[mm]	1,7								
Displaceme	nt under sl	near load								
Cracked or I	uncracked	concrete								
Steel zinc pl	ated				_					
Shear load	[kN]	11,	3	12,7	29,0	45,9	65,3			
δ_{V0}	[mm]	1,2	2		1,5		,8			
$\delta_{V\infty}$	[,,,,,,	1,8	3		2,3	4,2				
Stainless st	eel A4									
Shear load	[kN]	13,		19,3	35,8	55,9	71,1			
δ_{V0}	[mm]	1,0		1,1	2,2	3,5				
$\delta_{V^{\infty}}$		1,	5	1,7	3,3	5,3				
High corros										
Querlast	[kN]	13,		19,3	35,8	55,9	80,6			
δ_{V0}	[mm]	1,2		1,3	2,4	3,7	5,0			
$\delta_{V\infty}$	111111111	1,8		2,0	3,6	5,6	7,5			

Upat High-performance-Bonded-Anchor UHB-I	
Performance Displacement for Upat High-performance-Bonded-Anchor UHB - I - A S	Annex C 6