

Designated according to The Construction Products (Amendment etc.) (EU Exit) Regulations 2020

UK Technical Assessment	UKTA-0836-23/6750 of 09/05/2023
Technical Assessment Body issuing the UK Technical Assessment:	British Board of Agrément
Trade name of the construction product:	fischer concrete screw UltraCut FBS II
Product family to which the construction product belongs:	Product Area Code: 33 Fixings
Manufacturer:	fischer Fixings UK Limited, Whitely Road, Hithercroft Industrial Estate, Wallingford, Oxfordshire, OX10 9AT
Manufacturing plant(s):	fischerwerke
This UK Technical Assessment contains:	22 pages including 3 Annexes which form an integral part of this assessment
This UK Technical Assessment is issued in accordance with The Construction Products (Amendment etc.) (EU Exit) Regulations 2020 on the basis of:	UKAD 330232-00-0601 "Mechanical fastener for use in concrete"

Communication of this UK Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made with the written consent of the British Board of Agrément. Any partial reproduction must be identified as such.

1. Technical description of the product

The fischer concrete screw UltraCut FBS II is an anchor of sizes 6, 8, 10, 12 and 14 mm made of hardened carbon steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The product description is given in Annex A.

2. Specification of the intended use(s) in accordance with the applicable UK Assessment Document (hereinafter UKAD)

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this UK Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1. Mechanical resistance and stability (BWR 1)

Essential characteristics	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B4, C1 and C2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C1 and C2
Displacements and Durability	See Annex C7
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C3, C4 and C7

3.2. Safety in case of fire (BWR 2)

Essential characteristics	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C5 and C6

3.3. Health, hygiene and the environment (BWR 3)

Not relevant.

3.4. Safety and accessibility in use (BWR 4)

Not relevant.

3.5. Protection against noise (BWR 5)

Not relevant.

3.6. Energy economy and heat retention (BWR 6)

Not relevant.

3.7. Sustainable use of natural resources (BWR 7)

No performance assessed.

- 4. Assessment and verification of constancy of performance (hereinafter AVCP) system applied
- **4.1. System of assessment and verification of constancy of performance** According to UKAD No. 330232-00-0601 and Annex V of the Construction Products Regulation (Regulation (EU) 305/2011) as brought into UK law and amended, the system of assessment and verification of constancy of performance (AVCP) 1 applies.
- 5. Technical details necessary for the implementation of the AVCP system, as provided for in the applicable UKAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with the British Board of Agrément and made available to the UK Approved Bodies involved in the conformity attestation process.

5.1. UKCA marking for the product/ system must contain the following information:

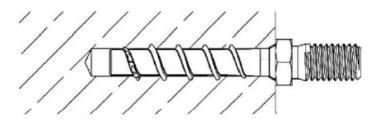
- Identification number of the Approved Body
- Name/address of the manufacturer of the product/ system
- Marking with intention of clarification of intended use
- Date of marking
- Number of certificate of constancy of performance (where applicable)
- UKTA number.

On behalf of the British Board of Agrément

2.1

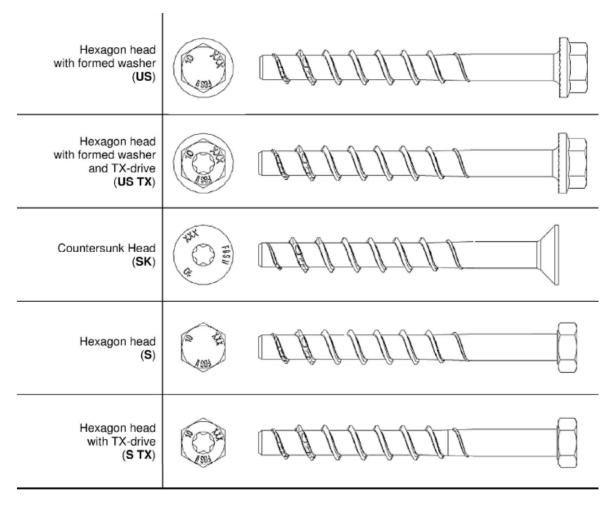
Date of Issue: 09 May 2023

Hardy Giesler Chief Executive Officer



British Board of Agrément, 1st Floor Building 3,

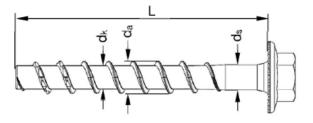
st Floor Building 3 Hatters Lane, Croxley Park Watford WD18 8YG

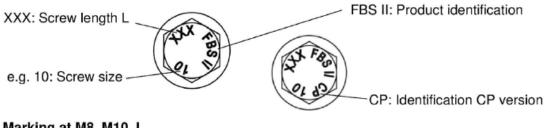


FBS II 6 M8

ANNEX A2 UltraCut FBS II / Product description / Screw types FBS II 6

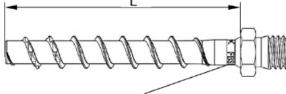
Hexagon head with formed washer (US)	4583	
Hexagon head with formed washer and TX-drive (US TX)	68911	
Countersunk Head (SK)	WXX 000	
Pan head (P)	FBS	
Large Pan head (LP)	Fight And	
Hexagon head and connection thread M8 or M10 (M)	(w)	
Hexagon connecting nut with metric internal thread (I)		


ANNEX A3 UltraCut FBS II / Product description / Screw types FBS II 8 to 14


ANNEX A4 UltraCut FBS II / Product description / Geometry and marking

				All	head shape	S			
			6	8	10	12	14		
Thread outer diameter	da	[mm]	7.75	10.3	12.5	14.5	16.6		
Core diameter	dĸ		5.65	7.4	9.4	11.3	13.3		
Shaft diameter	ds		6.0	8.0	9.9	11.7	13.7		
Material		[-]	Hardened ca	Hardened carbon steel; A₅% ≥ 8%					
Coating FBS II			Galvanised						
Coating FBS II C	P		- Multilayer coating						

Table A4.1: geometry and material



Head marking US, US TX, S, S TX, SK, P, LP

Marking at M8, M10, I

Head marking: XX: Screw length L

Rotary marking: FBS II: Product identification e.g. 6: Screw size

ANNEX B1 UltraCut FBS II / Intended use / Specification of intended use

Table B1.1: Anchorages subject to

Size	6	8	3		10			12			14	
Nominal embedment depth [mm]	40-55	50	65	55	65	85	60	75	100	65	85	115
Static and quasi-static loads in cracked and uncracked concrete				✓								
Fire exposure												
Seismic performance category C1	~								./			./
Seismic performance category C2			V			v			~			v

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres (cracked and uncracked) according to EN 206:2013+A1:2016
- Strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016

Use conditions (Environmental conditions):

· Structures subjected to dry internal conditions

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the screw is indicated on the design drawings (e.g. position of the screw relative to reinforcement or to supports, etc.).
- Design of fastenings according to EN 1992-4: 2018 and EOTA Technical Report TR 055.

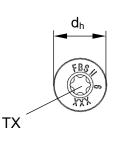
Installation:

- Hammer drilling or hollow drilling: All sizes and embedment depths.
- Alternative diamond drilling: All sizes and embedment depths from diameter 8.
- Screw installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on site.
- In case of aborted hole: New hole must be drilled at a minimum distance of twice the depth of the aborted hole or closer, if the hole is filled with a high strength mortar and only if the hole is not in the direction of the oblique tensile or shear load.
- Adjustability according to Annex B4 for: All sizes and embedment depths.
- Cleaning of drill hole is not necessary when using a hollow drill with functional suction or:
 - If drilling vertically upwards
 - If drilling vertical downwards and the drill hole depth has been increased. It is recommended to increase the drill depth with additional 3 d_0
- After correct installation further turning of the screw shall not be possible.

• The head of the screw must be fully engaged on the fixture and show no signs of damage. For seismic performance category C2 applications: The gap between screw shaft and fixture must be filled with mortar; mortar compressive strength ≥ 50 N/mm² (e. g. FIS V Plus, FIS HB, FIS SB or FIS EM Plus)

ANNEX B2 UltraCut FBS II / Intended use / Installation parameters FBS II 6


FBS II 6			All head shapes
Nominal embedment depth	h _{nom}		$40 \le h_{nom} \le 55$
Nominal drill hole diameter	d ₀		6
Cutting diameter of drill bits	d _{cut} ≤		6,4
Clearance hole diameter	d _f ≤	[mm]	8
Drill hole depth			h _{nom} + 10 ¹⁾
Drill hole depth (with adjustable setting)	h₁≥		h _{nom} + 20
Torque impact screwdriver	T _{imp,max}	[Nm]	450
Maximum installation torque with metric screws or hexagon nuts on head shapes M and I	T _{max}	[Nm]	10


Table B2.1: Installation parameters FBS II 6 - drilling bore hole and setting tools

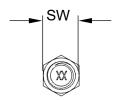
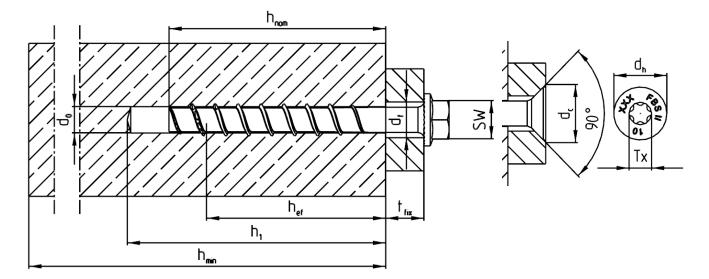
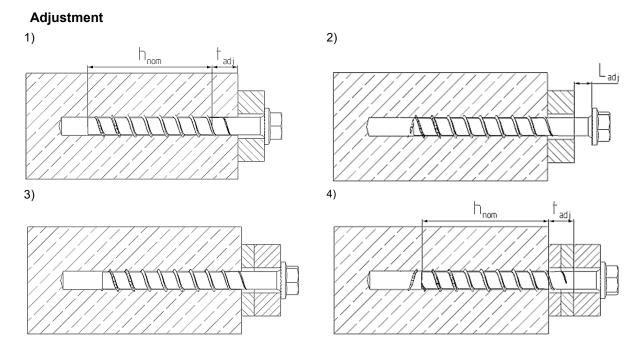

 $^{1)}$ Value can be reduced to h_{nom} + 5 for installation vertically upwards

Table B2.2: Installation parameters FBS II 6 - drive and fixture

FBS II 6			US	US TX	SK	Р	LP	M8	M10	
Wrench size	SW	[mm]	10	10 / 13		-			13	-
TX size	ТΧ	[-]	-		30					
Head diameter	dh			17		14,4	17,5		-	
Thickness of fixture	t _{fix} ≤	[mm]		L - h _{nom}						
Longth of acrow	L _{min} =	[mm]	40							
Length of screw	L _{max} =				325				55	




ANNEX B3 UltraCut FBS II / Intended use / Installation parameters FBS II 8-14

Size							FBS II							
Size			8			10		12			14			
Nominal embedment depth	h _{nom}		50	65	55	65	85	60	75	100	65	85	115	
Nominal drill hole diameter	d_0			3		10			12			14		
Cutting diameter of drill bits			8,	45		10,45			12,50			14,50		
Cutting diameter of diamond driller	d _{cut} ≤	[mm]	8,	10		10,30			12,30			14,30		
Clearance hole diameter	df		10,6 -	- 12,0	12	2,8 – 14	l,0	14	1,8 – 16	6,0	16,9 – 18,0			
Wrench size (US,S)	SW		13		15		17			21				
Tx size	Tx	[-]	4	40		50								
Head diameter	dh		1	8	21			_						
Countersunk diameter in fixture	dc		2	0		23								
Drill hole depth			60	75	65	75	95	70	85	110	80	100	130	
Drill hole depth (with adjustable setting)	h₁≥	[mm]	70	85	75	85	105	80	95	120	90	110	140	
Thickness of fixture	t _{fix} ≤							L - h _{nom}	1					
Length of consu	L _{min} =	L _{min} =	50	65	55	65	85	60	75	100	65	85	115	
Length of screw	L _{max} =		400	415	405	415	435	410	425	450	415	435	465	
Torque impact screwdriver	T _{imp,max}	[Nm]	600						650					

Table B3.1: Installation parameters FBS II 8 - 14

ANNEX B4 UltraCut FBS II / Intended use / Adjustment / Minimum thickness of members, minimum spacing and edge distance

It is permissible to untighten the screw up to two times for adjustment purposes.

Therefore, the screw may be untightened to a maximum of $L_{adj} = 20$ mm to the surface of the initial fixture.

The total permissible thickness of shims added during the adjustment process is t_{adj} = 10 mm

(Fig. not to scale)

Sizo			FBS II											
3126	Size		6	6 8		10			12			14		
Nominal embedment depth	\mathbf{h}_{nom}		40 to 55	50	65	55	65	85	60	75	100	65	85	115
Minimum thickness of concrete member	h _{min}	[mm]	max.(80 ; h ₁ ¹⁾ + 30)	100	120	100	120	140	110	130	150	120	140	180
Minimum spacing	Smin		35	3	5		40			50			60	
Minimum edge distance	Cmin		35	3	5		40			50			60	

 Table B4.1: Minimum thickness of concrete members, minimum spacing and edge distance

¹⁾ Drill hole depth according to table B2.1

ANNEX B5 UltraCut FBS II / Intended use / Installation instruction

Installation instruction part 1

Installation instruction part i	
	Step 1: Creation of the drill hole: Drill the hole using hammer drill, hollow drill or diamond core drill (from diameter 8). Drill hole diameter d_0 and drill hole depth h_1 according to table B2.1 and B3.1
	Step 2: Cleaning of the drill hole - horizontal: Clean the drill hole. This step can be omitted in the preparation of the hole by using a hollow drill bit or diamond core drill. (recommendation: use the fischer FHD hollow drill bit)
	Step 2: Cleaning of the drill hole - vertical: Cleaning of the drill hole can be omitted, if drilling vertically upwards or if drilling vertically downwards and the hole depth has been increased. It is recommended to increase the drill hole depth by an additional 3 x drilling ø when drilling vertically downwards.
	Step 3: Installation: Installation with any torque impact screwdriver up to the maximum mentioned torque moment (T _{imp,max} according to table B2.1 and B3.1). (recommendation: use the fischer FSS 18V 400BL) Alternatively, all other tools without an indicated torque moment are allowed (e.g. ratchet spanner). The indicated torque moments T _{imp,max} for impact screwdriver are not decisive for manual installation.
	Step 4: Checking of the correct installation: After installation a further turning of the screw must not be possible. The head of the screw must be in contact with the fixture and is not damaged

ANNEX B6 UltraCut FBS II / Intended use / Installation instruction

Installation instruction part 2

Adjustment Optional: It is permissible to adjust the screw twice. Therefore, the screw may be untightened to a maximum of $L_{adj} = 20$ mm off the surface of the initial fixture. The total permissible thickness of shims added during the adjustment process is $t_{adj} = 10$ mm.
Filling of the annular gap For seismic performance category C2 applications: The gap between screw shaft and fixture must be filled with mortar; mortar compressive strength ≥ 50 N/mm ² (e. g. FIS V Plus, FIS HB, FIS SB or FIS EM Plus). As an aid for filling the gap, the filling disc FFD is recommended.

ANNEX C1 UltraCut FBS II / Performance / Characteristic values for static and quasi-static action with FBS II 6

	acteristic values i					BS II 6				
Nominal embedme	ent depth	h _{nom}	[mm]	40	45	50	55			
Steel failure for t	ension load and	shear lo	oad							
Characteristic resi	stance	N _{Rk,s}	[kN]		21					
Partial factor		γMs,N	[-]	1,4						
Characteristic resi	stance	V ⁰ Rk,s	[kN]	9,0 13,						
Partial factor		γMs,V	г 1		1,5					
Factor for ductility		k 7	[-]			1,0				
Characteristic ben	ding resistance	M ⁰ Rk,s	[Nm]			17,1				
Pullout failure										
Characteristic resistance in	uncracked	N _{Rk,p}	[kN]	8,0	10,0	12,0	13,5			
concrete C20/25	cracked	N _{Rk,p}	וגואן	2,5	3,5	4,0	5,0			
					1,12					
	C30/37					1,22				
Increasing C35/45		Ψc	F 1	1,32						
factors concrete			[-]			1,41				
	C45/55			1,50						
	C50/60					1,58				
Installation factor		γinst	[-]			1,0				
Concrete cone fa	ilure and splitti	ng failur	e; conc	rete pryout	failure					
Effective embedm	ent depth	h _{ef}	[mm]	32	36	40	44			
Factor for uncrack	ed concrete	k _{ucr,N}	r 1	11,0						
Factor for cracked	concrete	k _{cr,N}	[-]			7,7				
Characteristic edg	e distance	Ccr,N	[mm]		1	,5 h _{ef}				
Characteristic spa	cing	Scr,N	[]			3 h _{ef}				
Charact. resistance		N ⁰ Rk,sp	[kN]		min (N	⁰ Rk,c ¹⁾ ;NRk,p)				
Charact. edge dist splitting	tance for	Ccr,sp	[mm]		1	,5 h _{ef}				
Charact. spacing t	for splitting	S _{cr,sp}				3 h _{ef}				
Factor for pry out	failure	k ₈	[-]			2,0				
Installation factor		γinst				1,0				
Concrete edge fa	ilure									
Effective length in	concrete	l _f	[mama]	40	45	50	55			
Nominal diameter	of screw	d _{nom}	[mm]		•	6	•			
Adjustment										
Maximum thicknes	ss of shims	t _{adj}	[mm]	m] 10						
Max. number of a	djustments	na	[-]			2				
	, ng EN 1002 1.20									

Table C1.1: Characteristic values for static and quasi-static action with FBS II 6

¹⁾ N⁰_{Rk,c} according EN 1992-4:2018

ANNEX C2 UltraCut FBS II / Performance / Characteristic values for static and quasi-static action with FBS II 8-14

Size	acteristic value								FBS						
Size		1	1		3		10			12	I		14		
Nominal embedm		h _{nom}	[mm]	50	65	55	65	85	60	75	100	65	85	115	
Steel failure for t	tension load ar	nd she	ar load			P			1						
Characteristic res	istance	N _{Rk,s}	[kN]	3	5		55			76			103		
Partial factor		γMs,N	[-]		1,4										
Characteristic res	istance	$V^0 Rk,s$	[kN]	13,1	19,0	29	,4	34,9	3	31,9	42,7	46	6,5	61,7	
Partial factor		γMs,V	[-]		1,5										
Factor for ductility		k 7	[-]						1,0						
Characteristic ber resistance	nding	M ⁰ Rk,s	[Nm]	5	1		95			165			269		
Pullout failure															
Characteristic	uncracked	N _{Rk,p}	[kN]						≥ N ⁰ Rk,	,c ¹⁾					
resistance in concrete C20/25	cracked	N _{Rk,p}	[kN]	6	12	9	12			≥	N ⁰ Rk,c ¹⁾				
	C25/30								1,12						
	C30/37								1,22						
Increasing	C35/45	Ψc	r 1	1,32											
factors concrete	C40/50		[-]	1,41											
	C45/55			1,50											
	C50/60								1,58						
Installation factor		γinst	[-]						1,0						
Concrete cone fa	ailure and split	ting fa	ilure;	concr	ete pry	/out	failu	re							
Effective embedm	nent depth	h _{ef}	[mm]	40	52	43	51	68	47	60	81	50	67	93	
Factor for uncrack	ked concrete	k _{ucr,N}	[mm]						11,0						
Factor for cracked	d concrete	k cr,N	[mm]						7,7						
Characteristic ede	ge distance	Ccr,N	[mm]						1,5 h	ef					
Characteristic spa		Scr,N	[mm]						3 h _{ef}	F					
Characteristic res splitting	istance for	N ⁰ Rk,s	[kN]					min ((N ⁰ Rk,c ¹	⁾ ; N Rk,p)					
Characteristic edo splitting	ge distance for	Ccr,sp	[mm]						1,5 h	ef					
Characteristic spa splitting	acing for	Scr,sp	[mm]						3 h _{ef}	f					
Factor for pryout	failure	k ₈	[-]	1,0	2,0	1,0				2	,0				
Installation factor		γinst	[-]	[-] 1,0											
Concrete edge fa	ailure														
Effective length in	i concrete	lf	[mm]	50	65	55	65	85	60	75	100	65	85	115	
Nominal diameter	of screw	d_{nom}	[mm]	8	3		10			12			14		
Adjustment															
Maximum thickne	ss of shims	t _{adj}	[mm]						10						
Maximum number adjustments		Na	[-]						2						
¹⁾ N ⁰ _{Rk c} according	EN 1002 4-20	10													

Table C2.1: Characteristic values for static and quasi-static action with FBS II 8 - 14

¹⁾ $N^{0}_{Rk,c}$ according EN 1992-4:2018

ANNEX C3 UltraCut FBS II / Performance / Characteristic values for seismic performance category C1

Table C3.1. Characteristic values to	l colonno	ponom								
				F	BS II 6	-				
Nominal embedment depth	h _{nom}	[mm]	40	45	50	55				
Steel failure for tension load and	shear loa	d								
Characteristic resistance	N _{Rk,s,C1}	[kN]			21					
	V _{Rk,s,C1}			6,3		9,3				
Without filling of the annular gap ¹⁾	a	r 1			0,5					
With filling of the annular gap ¹⁾	α _{gap}	[-]			1,0					
Pullout failure										
Characteristic resistance in cracked concrete	N _{Rk,p,C1}	[kN]	2,5	3,5	4,0	5,0				
Concrete cone failure										
Effective embedment depth	h _{ef}		32	36	40	44				
Characteristic edge distance	Ccr,N	[mm]			I,5 h _{ef}					
Characteristic spacing	S _{cr,N}				3 h _{ef}					
Installation factor	γinst	[-]			1,0					
Concrete pryout failure										
Factor for pryout failure	k ₈	[-]			2,0					
Concrete edge failure										
Effective length in concrete	lf	[mm]	40	45	50	55				
Nominal diameter of screw	dnom	[mm]			6					

Table C3.1: Characteristic values for seismic performance category C1 with FBS II 6

Table C3.2: Characteristic values for seismic performance category C1 with FBS II 8 - 14

Sinc				F	BS II		
Size			8	10	12	14	
Nominal embedment depth	h _{nom}	[mm]	65	85	100	115	
Steel failure for tension load and	l shear l	oad					
Characteristic resistance	NRk,s,C1	[kN]	35	55	76	103	
	$V_{\text{Rk},\text{s},\text{C1}}$	[KIN]	11,4	22,3	26,9	38,3	
Without filling of the annular gap ¹⁾	~	[-]			0,5		
With filling of the annular gap ¹⁾	α _{gap}	[-]			1,0		
Pullout failure							
Characteristic resistance in cracked concrete	NRk,p,C1	[kN]	12 $\geq N^{0}_{Rk,c^{2}}$				
Concrete cone failure							
Effective embedment depth	h _{ef}		52	68	81	93	
Characteristic edge distance	Ccr,N	[mm]			1,5 h _{ef}		
Characteristic spacing	Scr,N				3 h _{ef}		
Installation factor	γinst	[-]			1,0		
Concrete pryout failure							
Factor for pryout failure	k ₈	[-]			2,0		
Concrete edge failure							
Effective length in concrete	lf	[mm]	65	85	100	115	
Nominal diameter of screw	d _{nom}	[mm]	8	10	12	14	

 $^{1)}$ Filling of the annular gap according annex B 6. $^{2)}$ $N^{0}_{\text{Rk,c}}$ according EN 1992-4:2018

ANNEX C4 UltraCut FBS II / Performance / Characteristic values for seismic performance category C2 for FBS 2 8-14

Size				FB	S II			
		-	8	10	12	14		
Nominal embedment depth	\mathbf{h}_{nom}	[mm]	65	85	100	115		
Steel failure for tension load a	nd shear	load						
Characteristic resistance	N _{Rk,s,C2}		35,0	55	76,0	103		
	V _{Rk,s,C2}	[kN]	13,3	20,4	29,9	35,2		
With filling of the annular gap ¹⁾	α _{gap}	[-]		1	,0			
Pullout failure								
Characteristic resistance in cracked concrete	N _{Rk,p,C2}	[kN]	2,1	6,0	8,9	17,1		
Concrete cone failure								
Effective embedment depth	h _{ef}		52	68	81	93		
Characteristic edge distance	Ccr,N	[mm]		1,5	h _{ef}			
Characteristic spacing	Scr,N		3 h _{ef}					
Installation factor	γinst	[-]		1	,0			
Concrete pryout failure								
Factor for pryout failure	k ₈	[-]		2	,0			
Concrete edge failure								
Effective length in concrete			65	85	100	115		
Nominal diameter of screw	d _{nom}	[mm]	8	10	12	14		

Table C4.1: Characteristic values for seismic performance category C2

¹⁾ Filling of the annular gap according annex B 5. Application without filling of the annular gap not allowed.

ANNEX C5 UltraCut FBS II / Performance / Characteristic values for resistance to fire for FBS II 6

FBS II 6	6								
Nominal embedment depth		h _{nom}	[mm]	40	45	50	55		
Steel failure for tension load a	nd shear	load							
		R30				1,00			
		R60				0,60			
	N _{Rk,s,fi}	R90				0,50			
Characteristic resistance for all		R120				0,40			
head shapes	V _{Rk,s,fi}	R30	[kN]			1,00			
		R60				0,60			
		R90		0,50					
		R120		0,40					
	N 40	R30		0,80					
Characteristic bending		R60	[Nima]			0,50			
resistance for all head shapes	M ⁰ Rk,s,fi	R90	[Nm]	0,40					
		R120		0,35					
Pullout failure									
		R30							
Characteristic resistance	NI	R60	FLAN1	0,6	0,9	1,0	1,2		
Characteristic resistance	N _{Rk,p,fi}	R90	[kN]						
		R120		0,5	0,7	0,8	1,0		
Edge distance						•			
R30 to R120		Ccr,fi	[mm]			2 h _{ef}			
In case of fire attack from more	than one	side, the	minimu	m edge c	listance s	hall be ≥ 30	0 mm		
Spacing									
R30 to R120		Scr,fi	[mm]			2 Ccr,fi			

Table C5.1: Characteristic values for resistance to fire with FBS II 6¹⁾

 30 to R120
 | scr,fi
 [mm]
 2 ccr,fi

 1) The embedment depth has to be increased for wet concrete by at least 30 mm compared to the given value.

ANNEX C6 UltraCut FBS II / Performance / Characteristic values for resistance to fire for FBS II 8-14

					FBS II											
Size					8			10			12			14		
Nominal embed	dment dep	th	\mathbf{h}_{nom}	[mm]	50	65	55	65	85	60	75	100	65	85	115	
Steel failure fo	or tension	load an	d shear l	load												
			R30		2,33		3,45			4,62			6,46		; ;	
		N	R60		1,8	32		2,73			3,66			5,11		
		N _{Rk,s,fi}	R90		1,3	80		2,00			2,69			3,75	,	
	US, S		R120		1,0)4		1,64			2,20			3,08	6	
	00, 0	-	R30]	2,3	33		3,45			4,62			6,46	i	
		V _{Rk,s,fi} -	R60		1,8	32		2,73			3,66			5,11		
		V Rk,s,fi	R90		1,3	80		2,00		2,69				3,75	i	
			R120	[kN]	1,0)4		1,64		2,20				3,08	i	
Characteristic		-	R30	נגואן	2,1	2		2,96								
resistance for		N _{Rk,s,fi} -	R60		1,6	67		2,26								
the head	01/	INRK,S,TI	R90		1,2	21		1,56								
shapes SK,		R120		0,9	9		1,21				form	nco	docla	arad		
	US TX, S TX	_	R30		2,12			2,96		No performa						
		V _{Rk,s,fi} -	R60		1,6	67		2,26								
		V RK,S,TI	R90		1,2	21		1,56								
			R120		0,9	9		1,21								
		_	R30		2,6	62		4,92			7,83			12,8	9	
	All head	M ⁰ Rk,s,fi -	R60	[Nm]	2,0)5		3,89			6,20			10,1	9	
	shapes	IVI RK,S,T	R90	[[N]]]	1,4	6		2,85			4,56			7,48	6	
			R120		1,1	7		2,34			3,73			6,14		
Pullout failure						1					1	1				
		-	R30	_												
Characteristic r	esistance	Nekofi -	R60	[kN]	1,5	3,0	2,3	3,0	5,0	2,9	4,2	6,6	3,2	4,9	8,1	
Characteriotic	oolotanoo		R90	[]	-											
			R120		1,2	2,4	1,8	2,4	4,0	2,3	3,3	5,2	2,5	3,9	6,5	
Edge distance	•			[r •]						0.1						
R30 to R120	11		Ccr,fi	[mm]			1			2 h _{ef}		000				
In case of fire a	attack from	more th	an one si	ide, the	minin	num	edge	dista	ince	shall	be ≥	300	mm			
Spacing R30 to R120			Sar f	[mm]						2 C _{cr,f}	6					
			Scr,fi	[[uuu]]							1					

Table C6.1: Characteristic values for resistance to fire with FBS II 8 – 14¹⁾

¹⁾ The embedment depth has to be increased for wet concrete by at least 30 mm compared to the given value.

ANNEX C7 UltraCut FBS II / Performance / Displacements due to tension and shear loads

Size									FE	BS II					
SIZE			6 ¹⁾		8		10		12						
Nominal embedment depth	h _{nom}	[mm]	40	55	50	65	55	65	85	60	75	100	65	85	115
Tension load in cracked concrete	N	[kN]	2,0	3,5	2,9	5,7	4,3	5,7	9,6	5,5	8,0	12,5	6,1	9,4	15,3
	δνο	[mage]	1,1	1,4	0,5	0,9	0,7	0,7	0,8	0,7	0,9	0,8	0,8	1,0	0,8
Displacement	δn∞	[mm]	2,5	2,5	1,3	1,0	0,7	0,7	0,8	1,3	0,9	0,8	1,1	1,0	1,1
Tension load in uncracked concrete	N	[kN]	4,0	7,0	7,9	12,0	6,8	8,8	13,5	7,7	11,0	17,4	8,5	13,2	21,6
Displacement	δ _{N0}	[mages]	1,0	1,8	0,9	1,4	0,9	0,9	1,4	0,9	1,1	1,4	1,0	1,3	1,1
	δ _{N∞}	[mm]	1,7	2,6	1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,1	1,3	1,1

 Table C7.1: Displacements due to tension loads (static)

¹⁾ Intermediate values by linear interpolation

Table C7.2: Displacements due to shear loads (s	static)	
---	---------	--

Size				FBS II											
						3		10			12			14	
Nominal embedment depth	h _{nom}	[mm]	40	55	50	65	55	65	85	60	75	100	65	85	115
Shear load in cracked and uncracked concrete	v	[kN]	4,5	6,7	6,2	9,0	14,0	14,0	16,6	15,9	15,9	21,2	23,0	23,0	30,5
Displacement	δνο	[mm]	2,0	2,9	1,4	1,4	3,2	3,2	3,2	2,5	2,5	3,4	2,8	2,8	5,4
	δv∞	[mm]	2,9	4,4	2,0	2,1	4,9	4,9	4,9	3,8	3,8	5,1	4,2	4,2	8,1

¹⁾ Intermediate values by linear interpolation

Table C7.3: Displacements due to tension loads	(seismic performance category C2)
--	-----------------------------------

Size	FBS II						
		8	10	12	14		
Nominal embedment depth	h _{nom}		65	85	100	115	
Displacement DLS	δ N,C2 (DLS)	[mm]	0,5	0,8	0,9	1,3	
Displacement ULS	δN,C2 (ULS)		1,7	2,8	2,7	5,0	

	Table C7.4: Displacements of	ue to shear loads (seismic	performance category C2)
--	------------------------------	----------------------------	--------------------------

			J J - /			
Size		FBS II				
			8	10	12	14
Nominal embedment depth	h _{nom}		65	85	100	115
Displacement DLS	δ V,C2 (DLS)	[mm]	1,6	2,7	3,1	4,1
Displacement ULS	δ V,C2 (ULS)		3,9	7,1	5,3	8,7

British Board of Agrément, 1st Floor Building 3,

Hatters Lane, Croxley Park Watford WD18 8YG