Evidence of Performance Joint sound reduction of filling material

Test Report no. 17-001469-PR01 (PB 01-K05-04-en-01)

> Client fischerwerke GmbH & Co. KG Klaus-Fischer-Str. 1 72178 Waldachtal Germany

1K-gun foam Product

fischer PUP B1 750 Designations 10 mm joint : 31 g/l 20 mm joint: 26 g/l Density -/-

> Weighted sound reduction index of joints R_{s.w} Spectrum adaptation terms C and C_{tr}

10 mm joint $R_{\rm s,w}$ (*C*; *C*_{tr}) = 63 (-1; -5) dB 20 mm joint $R_{\rm s,w}$ (C; C_{tr}) = 62 (-1; -4) dB

Determined for 10 and 20 mm width of joint

ift Rosenheim 09.05.2017

Special features

Keniger

Dr. Joachim Hessinger, Dipl.-Phys. Head of Testing Department **Building Acoustics**

Florian Brechleiter, MSc, Dipl.-Ing. (FH) **Operating Testing Officer Building Acoustics**

Basis EN ISO 10140-1: 2010 +A1: 2012 + A2:2014 EN ISO 10140-2 : 2010 EN ISO 717-1 : 2013

Transfer of test report 16-003744-PR01 (PB 01-K05-04en-01) dated 18.11.2016 to new owner and his product designation

Representation

Instructions for use

This procedure is suitable for the comparison of construction products designed for sealing (e.g. gaskets/seals, fillers for joints). The results can be used to evaluate the sound power ratio τ_e according to EN 12354-3 Annex B.

Using the calculated sound reduction of the joint for the calculation of the overall sound reduction is not a substitute for the sound reduction verification of the overall construction.

Validity

The data and results given relate solely to the tested and described specimen.

Testing the sound insulation does not allow any statement to be made on any further characteristics of the construction submitted regarding performance and quality.

Notes on publication

The ift Guidance Sheet "Conditions and Guidance for the Use of ift Test Documents" applies. The cover sheet can be used as an abstract.

Contents

The test report contains a total of 11 pages:

- Object
- 2 Procedure

3 Detailed results 4 Instructions for use

Data sheets (2 pages)

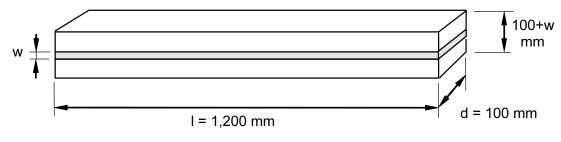
Ve-Prü-1307-de / 01.07.2016

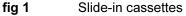
Theodor-Gietl-Str. 7-9 D-83026 Rosenheim

Kontakt Tel. +49.8031.261-0 Fax +49.8031.261-290 www.ift-rosenheim.de

Prüfung und Kalibrierung – EN ISO/IEC 17025 Inspektion – EN ISO/IEC 17020 Zertifizierung Produkte – EN ISO/IEC 17065 Zertifizierung Managementsysteme – EN ISO/IEC 17021

1 Object

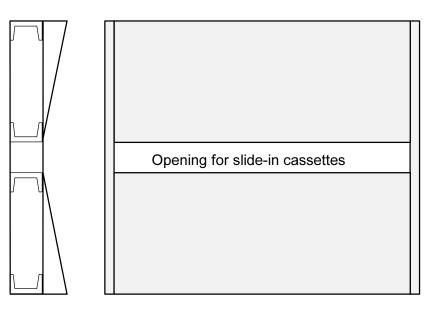

1.1 Description of test specimen

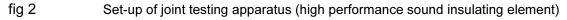

Product	1K-gun foam
Date of manufacturing of test specimen	04.11.2016
Product designation*	fischer PUP B1 750
Batch number*	800094681D03/16
Dimension	
Length of joint I	1,200 mm
Depth of joint d	100 mm
Width of joint w	10 mm and 20 mm
Joint cover	Without cover, foam cutted
Curing time	3 days
Density of sealant	10 mm joint: 31 g/l
	20 mm joint: 26 g/l
	Values determined on tested sealant

The description is based on inspection of the test specimen at the **ift** Laboratory for Building Acoustics. Item designations / numbers as well as material specifications were provided by the original client. Additional data provided by the manufacturer are marked with *.

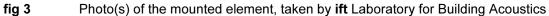
1.2 Mounting of test rig

The sound reduction index R_s of the joint was measured in a mobile joint measuring apparatus as per EN ISO 10140-1:2010 + A1:2012 (see Figs. 1 and 2). This mobile measuring apparatus consists of a high-performance sound insulating element made of metal profiles and Bondal sheet with slide-in cassettes; the profiles of the slide-in cassettes are filled with sand. Using these cassettes, a great variety of joints with varying joint widths w can be created (Fig. 1).





These slide-in cassettes were produced by the **ift** Laboratory for Building Acoustics 3 days before the date of test using the filling material to be tested as specified by the manufacturer. After curing the filling material was cut off and the cassettes were mounted to the high-performance sound insulating frame (Fig. 2). The frame was then mounted to the test opening in the separating wall of the window test rig (Z-wall) as per EN ISO 10 140-5.



The test opening connecting joints were filled with foamed material and sealed on both sides with plastic sealant.

Joint sound reduction of filling materials

 Test Report
 17-001469-PR01 (PB 01-K05-04-en-01) dated 09.05.2017

 Client
 fischerwerke GmbH & Co. KG, 72178 Waldachtal (Germany)

2 Procedure

2.1 Sampling

Sampling	The samples were selected by the original client. The slide-in cas- settes were filled by the ift Laboratory for Building Acoustics with the filler to be tested according to the instructions of the manufacturer.
Quantity	2
Manufacturer	The manufacturer is known to the ift Rosenheim. It is not published in this test report.
Manufacturing plant	The manufacturing plant is known to the ift Rosenheim. It is not pub- lished in this test report.
Date of manufacture /	20.01.2016 / 02.11.2016
Date of sampling	
Responsible for sampling	The person who was responsible for sampling is known to the ift Rosenheim. It is not published in this test report.
Delivery at ift ift registration number	04. November 2016 by the client via forwarding agency 42434/01

2.2 Process

Basis

Basis	
EN ISO 10140-1:2010 + A	1 : 2012 + A2 : 2014 Acoustics; Laboratory measurement of sound insulation of building elements - Part 1: Application rules for specific products (ISO 10140-1: 2010 + Amd. 1 : 2012 + Amd. 2: 2014)
EN ISO 10140-2:2010	Acoustics; Laboratory measurement of sound insulation of building elements - Part 2: Measurement of airborne sound insulation (ISO 10140-2:2010)
EN ISO 717-1: 2013	Acoustics; Rating of sound insulation in buildings and of building elements - Part 1: Airborne sound insulation
Corresponds to the national DIN EN ISO 10140-1:2014 1 : 2013-06	German standard/s: I-09, DIN EN ISO 10140-2:2010-12 and DIN EN ISO 717-
Boundary conditions	As specified by the standard
Deviation	There are no deviations from the test method/s and/or test conditions.
Test noise	Pink noise
Measuring filter	One-third-octave band filter
Measurement limits	
Low frequencies	The dimensions of the receiving room are smaller than rec- ommended for testing in the frequency range from 50 Hz to

Joint sound reduction of filling materials

Test Report	17-001469-PR01 (PB 01-K05-04-en-01) dated 09.05.2017
Client	fischerwerke GmbH & Co. KG, 72178 Waldachtal (Germany)

80 Hz as per EN ISO 10140-4:2010 Annex A (informative). A moving loudspeaker was used.

- Background noise level The background noise level in the receiving room was determined during measurement and the receiving room level L₂ corrected by calculation as per EN ISO 10140-4: 2010 Clause 4.3.
- Maximum insulation The maximum insulation of the test rig is partly within the range of the test results. Therefore the tested values are minimum values. A correction by calculation was performed for maximum sound insulation.

Measurement of reverberation time

Arithmetical mean: two measurements each of 2 loudspeaker and 3 microphone positions (a total of 12 independent measurements).

Measurement equation A

$$A = 0,16 \cdot \frac{V}{T} m^2$$

Measurement of sound level

difference

Minimum of 2 loudspeaker positions and rotating microphones.

Measurement equation

$$R_{S} = L_{1} - L_{2} + 10\log\frac{S_{N} \cdot l}{A \cdot l_{N}} \text{ dB}$$

KEY

 R_s Joint sound reduction index in dB

- Sound pressure level source room in dB L1 Sound pressure level receiving room in dB
- L_2 Length of joint in m 1
- Reference area (1 m²) S_N
- I_N Reference length (1 m)
- Equivalent absorption area in m²
- A V Volume of receiving room in m³

т Reverberation time in s

2.3 **Test apparatus**

Device	Туре	Manufacturer
Integrating sound meter	Type Nortronic 121	Norsonic-Tippkemper
Microphone preamplifiers	Type 1201	Norsonic-Tippkemper
Microphone unit	Туре 1220	Norsonic-Tippkemper
Calibrator	Type 1251	Norsonic-Tippkemper
Dodecahedron loudspeakers	Own design	-
Amplifier	Type E120	FG Elektronik
Rotating microphone boom	Own design / Type 231-N-360	Norsonic-Tippkemper

The ift Laboratory for Building Acoustics participates in comparative measurements at the Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig every three years, the last one was in April 2016. The sound level meter used, Series No. 31423, was DKD calibrat-

ed by the company Norsonic Tippkemper (DKD - Deutscher Kalibrierdienst "German Calibration_Service") on 22nd of June 2015.

2.4 Testing

Date7th of November 2016Operating testing officerMr. Florian Brechleiter

3 Detailed results

The values of the measured sound reduction index R_s of the joint for the tested filler are plotted against frequency in the data sheets (Annex). Based on EN ISO 717 - 1, this is used to calculate the weighted sound reduction index $R_{s, w}$ of the joint and the spectrum adaptation terms C and C_{tr} , related to joint length I = 1.20 m, for the frequency range 100 Hz to 3,150 Hz.

The diagram includes the maximum sound reduction of the test set-up (related to I = 1.20 m), plotted with a maximum weighted sound reduction index $R_{S,w max}$ (C;C_{tr}) = 62 (-1;-5) dB.

The resulting sound reduction indices for joints are within the range for maximum sound insulation; in these cases the values obtained are minimum values. For maximum insulation, it has been corrected by calculation as per EN ISO 10140-1:2010 + A1:2012+A2:2014. Table 1 lists the weighted sound reduction indices of the different joint designs.

Weighted joint sound re- duction index R _{S,w} (C; C _{tr}) in dB	Measures taken, comments
62 (-1;-5)	Maximum sound insulation
63 (-1; -5)	Joint width 10 mm, filled with fischer PUP B1 750
62 (-1; -4)	Joint width 20 mm, filled with fischer PUP B1 750

table 1 test results

4 Instructions for use

4.1 Application for DIN 4109: 2016-07

Basis

DIN 4109-1: 2016-07 DIN 4109-2: 2016-07 Sound insulation in buildings - Part 1: Minimum requirements Sound insulation in buildings - Part 2: Verification of compliance with the requirements by calculation

The weighted sound reduction index of joints determined in accordance with Section 3, can be directly used for verification of sound insulation by calculation in accordance with DIN 4109-2.

This sound reduction index of joints is comparable to the linear sound reduction index of a building component with 1 m joint length for each m^2 area and where the sound is transmitted only through the joint.

If the joint is combined with a building component (e.g. window with area S and sound reduction index R) and assuming the building component's area $S_1 >>$ than the opening area of the joint (w \cdot I, w = joint width), for the associated joint length I the resulting sound reduction index R_{res} is calculated as follows:

$$R_{i,w} = -10 \cdot \log \left(10^{-\frac{R_w}{10}} + \frac{l \cdot l_0}{S} \cdot 10^{-\frac{R_{s,w}}{10}} \right) dB$$

For calculation of the total weighted apparent sound reduction index $R'_{w,ges}$ in accordance with DIN 4109-2 Clause 4, the input data obtained from laboratory measurements must be stated in $1/_{10}$ dB. The resulting weighted sound reduction index can then be applied directly to the sound insulation of the i-th-component of the building envelope if there is no influence by installation joints. This gives:

4.2 Uncertainty of measurement, single number ratings in ¹/₁₀ dB

Basis

EN ISO 12999-1: 2014

Acoustics; Determination and application of measurement uncertainties in building acoustics, part 1: sound insulation (ISO 12999-1: 2014)

The resulting weighted sound reduction index of joints (in $^{1}/_{10}$ dB with measurement uncertainty), determined on the basis of EN ISO 717-1:2013-06 is:

 $R_{S,w}$ = 63,9 dB ± 1.2 dB (width of joint 10 mm)

 $R_{S,w}$ = 62,9 dB ± 1.2 dB (width of joint 20 mm)

The specified measurement uncertainty is the average standard deviation of laboratory measurements (standard measurement uncertainty σ_R for measurement situation A: Characterisation of a building component by laboratory measurements as per EN ISO 12999-1:2014, Table 3 σ_R = 1.2 dB).

The product declaration must use the integral value of the sound reduction index and the spectrum adaptation terms as given in Section 3

 $R_{S,w}(C;C_{tr}) = 63 (-1; -5) dB$ (width of joint 10 mm)

 $R_{S,w}$ (C;C_{tr}) = 62 (-1; -4) dB (width of joint 20 mm)

4.3 General remarks:

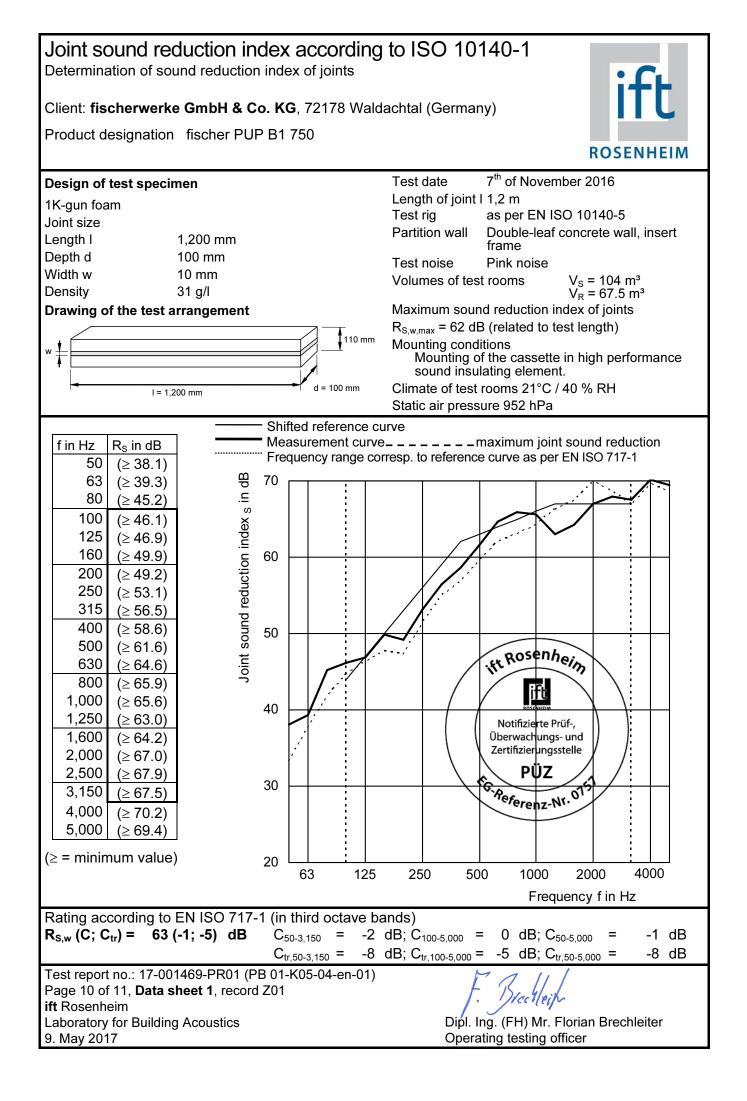
The method is suitable for comparing construction products designed for sealing purposes (e.g. seals/gaskets, fillers to seal joints). The results can be used to evaluate the sound power ratio τ_e as per EN 12354-3 Annex B. Using the calculated sound reduction of the joint for the calculation of the overall sound reduction is not a substitute for the verification of the overall construction

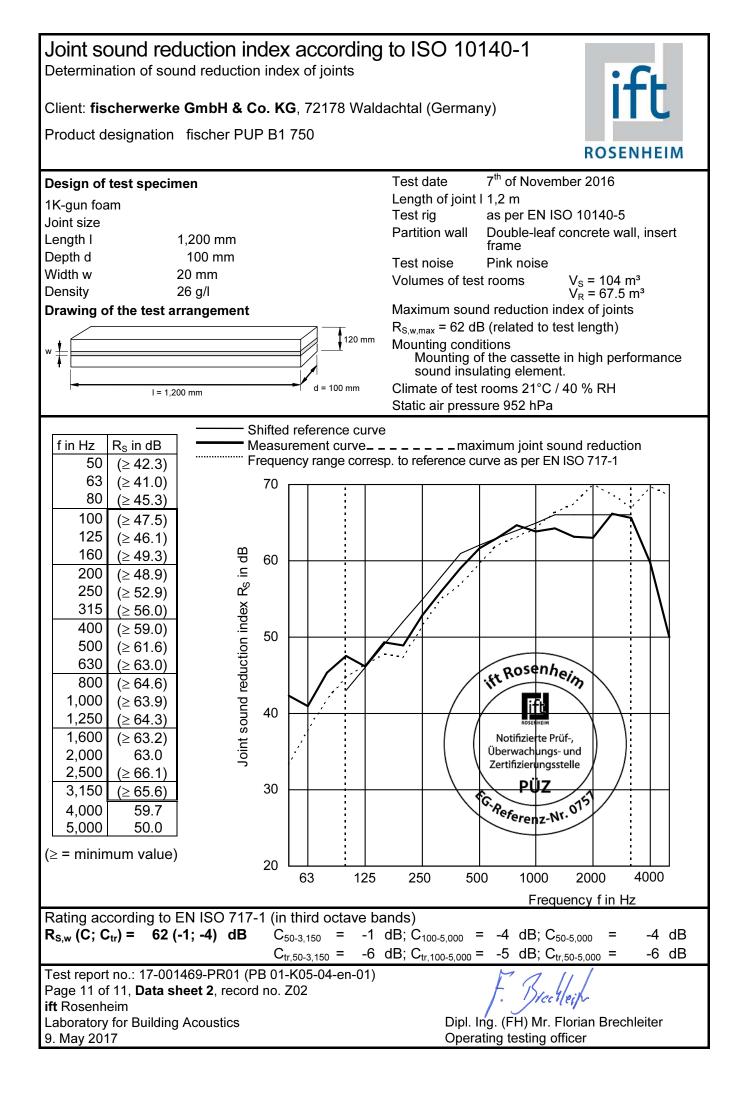
In practice, e.g. when combining the sound insulation of a window with that of a joint in an existing opening, the following must be taken into account:

- a) for physical reasons, the sound reduction index of joints must be corrected by approx. -3 dB in the area of corners and edges;
- b) the existing thickness of the window frame profile (joint depth d) must be adapted with a correction between -1 dB and -2 dB.
- c) experience shows that the filling of window niches in edges and difficult reachable areas are weak points by handling

From these results, that in practice the measured sound reduction index of joint has to be

- a) either corrected by -4 dB or
- b) increased by additional sealing with backfilling tape with or without bar or elastic sealant with filling band.


Remark on transfer of the test results


According to the experience of **ift** the following correction reduction has to be applied for a window with an area of 1.82 m² and a surrounding joint length of 5.5 m (conditions in laboratory) with the sound reduction index of a window of $R_w \ge 40$ dB:

 $R_{w,res} = R_{w,Fe} - 2 dB$

The corrective factor of -2 dB is inapplicable if a sealing is carried out on both sides additionally to the foaming. For windows with $R_w \ge 48 \text{ dB}$ higher reductions may apply.

ift Rosenheim Laboratory for Building Acoustics 09.05.2017

